Skip to main content

Advertisement

Log in

Genetic origins of hyper-IgE syndrome

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Hyper-IgE syndrome (HIES) is a complex primary immunodeficiency characterized by high serum IgE, chronic eczematoid dermatitis, and recurrent extracellular bacterial infections. Two types of HIES have been reported: type 1 and type 2. Type 1 HIES displays abnormalities in multiple systems, including the skeletal, dental, and immune systems, whereas type 2 shows abnormalities confined to the immune system. We recently identified hypomorphic mutations in the signal transducer and activator of transcription 3 (STAT3) gene in type 1 HIES and a null mutation in the tyrosine kinase 2 (Tyk2) gene, accompanied by susceptibility to intracellular bacteria in type 2 HIES. Analyses of cytokine responses in both types of HIES revealed that severe defects in the signal transduction for multiple cytokines, including interleukin-6 and interleukin-23, are leading to impaired T-helper type 17 function. These findings suggest that HIES is caused by the defects in multiple cytokine signals and that the susceptibility to various infections in HIES is associated with the T-helper type 17 defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Minegishi Y, Karasuyama H: Hyperimmunoglobulin E syndrome and tyrosine kinase 2 deficiency. Curr Opin Allergy Clin Immunol 2007, 7:506–509.

    Article  PubMed  CAS  Google Scholar 

  2. Grimbacher B, Holland SM, Puck JM: Hyper-IgE syndromes. Immunol Rev 2005, 203:244–250.

    Article  PubMed  CAS  Google Scholar 

  3. Grimbacher B, Holland SM, Gallin JI, et al.: Hyper-IgE syndrome with recurrent infections—an autosomal dominant multisystem disorder. N Engl J Med 1999, 340:692–702.

    Article  PubMed  CAS  Google Scholar 

  4. Freeman AF, Kleiner DE, Nadiminti H, et al.: Causes of death in hyper-IgE syndrome. J Allergy Clin Immunol 2007, 119:1234–1240.

    Article  PubMed  CAS  Google Scholar 

  5. Renner ED, Puck JM, Holland SM, et al.: Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J Pediatr 2004, 144:93–99.

    Article  PubMed  CAS  Google Scholar 

  6. Ihle JN: Cytokine receptor signalling. Nature 1995, 377:591–594.

    Article  PubMed  CAS  Google Scholar 

  7. Liu KD, Gaffen SL, Goldsmith MA: JAK/STAT signaling by cytokine receptors. Curr Opin Immunol 1998, 10:271–278.

    Article  PubMed  CAS  Google Scholar 

  8. O’shea JJ, Gadina M, Schreiber RD: Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002, 109(Suppl):S121–S131.

    Article  PubMed  CAS  Google Scholar 

  9. Muller M, Briscoe J, Laxton C, et al.: The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and-gamma signal transduction. Nature 1993, 366:129–135.

    Article  PubMed  CAS  Google Scholar 

  10. Rodig SJ, Meraz MA, White JM, et al.: Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998, 93:373–383.

    Article  PubMed  CAS  Google Scholar 

  11. Neubauer H, Cumano A, Muller M, et al.: Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998, 93:397–409.

    Article  PubMed  CAS  Google Scholar 

  12. Parganas E, Wang D, Stravopodis D, et al.: Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998, 93:385–395.

    Article  PubMed  CAS  Google Scholar 

  13. Nosaka T, van Deursen JM, Tripp RA, et al.: Defective lymphoid development in mice lacking Jak3. Science 1995, 270:800–802.

    Article  PubMed  CAS  Google Scholar 

  14. Park SY, Saijo K, Takahashi T, et al.: Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 1995, 3:771–782.

    Article  PubMed  CAS  Google Scholar 

  15. Macchi P, Villa A, Giliani S, et al.: Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995, 377:65–68.

    Article  PubMed  CAS  Google Scholar 

  16. Russell SM, Tayebi N, Nakajima H, et al.: Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 1995, 270:797–800.

    Article  PubMed  CAS  Google Scholar 

  17. Firmbach-Kraft I, Byers M, Shows T, et al.: Tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene 1990, 5:1329–1336.

    PubMed  CAS  Google Scholar 

  18. Velazquez L, Fellous M, Stark GR, Pellegrini S: A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 1992, 70:313–322.

    Article  PubMed  CAS  Google Scholar 

  19. Karaghiosoff M, Neubauer H, Lassnig C, et al.: Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 2000, 13:549–560.

    Article  PubMed  CAS  Google Scholar 

  20. Shimoda K, Kato K, Aoki K, et al.: Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function. Immunity 2000, 13:561–571.

    Article  PubMed  CAS  Google Scholar 

  21. Bacon CM, McVicar DW, Ortaldo JR, et al.: Interleukin 12 (IL-12) induces tyrosine phosphorylation of JAK2 and TYK2: differential use of Janus family tyrosine kinases by IL-2 and IL-12. J Exp Med 1995, 181:399–404.

    Article  PubMed  CAS  Google Scholar 

  22. Stahl N, Boulton TG, Farruggella T, et al.: Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 1994, 263:92–95.

    Article  PubMed  CAS  Google Scholar 

  23. Minegishi Y, Coustan-Smith E, Wang YH, et al.: Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med 1998, 187:71–77.

    Article  PubMed  CAS  Google Scholar 

  24. Minegishi Y, Rohrer J, Coustan-Smith E, et al.: An essential role for BLNK in human B cell development. Science 1999, 286:1954–1957.

    Article  PubMed  CAS  Google Scholar 

  25. Conley ME, Rohrer J, Rapalus L, et al.: Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol Rev 2000, 178:75–90.

    Article  PubMed  CAS  Google Scholar 

  26. Akira S, Nishio Y, Inoue M, et al.: Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 1994, 77:63–71.

    Article  PubMed  CAS  Google Scholar 

  27. Zhong Z, Wen Z, Darnell JE Jr: Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994, 264:95–98.

    Article  PubMed  CAS  Google Scholar 

  28. Wegenka UM, Buschmann J, Lutticken C, et al.: Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol 1993, 13:276–288.

    PubMed  CAS  Google Scholar 

  29. Lutticken C, Wegenka UM, Yuan J, et al.: Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 1994, 263:89–92.

    Article  PubMed  CAS  Google Scholar 

  30. Nakajima K, Yamanaka Y, Nakae K, et al.: A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J 1996, 15:3651–3658.

    PubMed  CAS  Google Scholar 

  31. Williams L, Bradley L, Smith A, Foxwell B: Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. J Immunol 2004, 172:567–576.

    PubMed  CAS  Google Scholar 

  32. Minami M, Inoue M, Wei S, et al.: STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci U S A 1996, 93:3963–3966.

    Article  PubMed  CAS  Google Scholar 

  33. Takeda K, Noguchi K, Shi W, et al.: Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 1997, 94:3801–3804.

    Article  PubMed  CAS  Google Scholar 

  34. Akira S: Roles of STAT3 defined by tissue-specific gene targeting. Oncogene 2000, 19:2607–2611.

    Article  PubMed  CAS  Google Scholar 

  35. Kasprzycka M, Marzec M, Liu X, et al.: Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci U S A 2006, 103:9964–9969.

    Article  PubMed  CAS  Google Scholar 

  36. Davis SD, Schaller J, Wedgwood RJ: Job’s syndrome. Recurrent, “cold,” staphylococcal abscesses. Lancet 1966, 1:1013–1015.

    Article  PubMed  CAS  Google Scholar 

  37. Buckley RH, Wray BB, Belmaker EZ: Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics 1972, 49:59–70.

    PubMed  CAS  Google Scholar 

  38. Del Prete G, Tiri A, Maggi E, et al.: Defective in vitro production of gamma-interferon and tumor necrosis factor-alpha by circulating T cells from patients with the hyper-immunoglobulin E syndrome. J Clin Invest 1989, 84:1830–1835.

    Article  PubMed  Google Scholar 

  39. Borges WG, Augustine NH, Hill HR: Defective interleukin-12/interferon-gamma pathway in patients with hyperimmunoglobulinemia E syndrome. J Pediatr 2000, 136:176–180.

    Article  PubMed  CAS  Google Scholar 

  40. Chehimi J, Elder M, Greene J, et al.: Cytokine and chemokine dysregulation in hyper-IgE syndrome. Clin Immunol 2001, 100:49–56.

    Article  PubMed  CAS  Google Scholar 

  41. Wood PM, Fieschi C, Picard C, et al.: Inherited defects in the interferon-gamma receptor or interleukin-12 signalling pathways are not sufficient to cause allergic disease in children. Eur J Pediatr 2005, 164:741–747.

    Article  PubMed  CAS  Google Scholar 

  42. Minegishi Y, Saito M, Morio T, et al.: Human tyrosine kinase 2 deficiency reveals its requisute roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006, 25:745–755.

    Article  PubMed  CAS  Google Scholar 

  43. Casanova JL, Abel L: Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 2002, 20:581–620.

    Article  PubMed  CAS  Google Scholar 

  44. Minegishi Y, Saito M, Tsuchiya S, et al.: Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 2007, 448:1058–1062.

    Article  PubMed  CAS  Google Scholar 

  45. Grimbacher B, Schaffer AA, Holland SM, et al.: Genetic linkage of hyper-IgE syndrome to chromosome 4. Am J Hum Genet 1999, 65:735–744.

    Article  PubMed  CAS  Google Scholar 

  46. Holland SM, DeLeo FR, Elloumi HZ, et al.: STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 2007, 357:1608–1619.

    Article  PubMed  CAS  Google Scholar 

  47. Renner ED, Torgerson TR, Rylaarsdam S, et al.: STAT3 mutation in the original patient with Job’s syndrome. N Engl J Med 2007, 357:1667–1668.

    Article  PubMed  CAS  Google Scholar 

  48. Dupuis S, Dargemont C, Fieschi C, et al.: Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 2001, 293:300–303.

    Article  PubMed  CAS  Google Scholar 

  49. Itoh S, Udagawa N, Takahashi N, et al.: A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone 2006, 39:505–512.

    Article  PubMed  CAS  Google Scholar 

  50. Yang XO, Panopoulos AD, Nurieva R, et al.: STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 2007, 282:9358–9363.

    Article  PubMed  CAS  Google Scholar 

  51. Toy D, Kugler D, Wolfson M, et al.: Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 2006, 177:36–39.

    PubMed  CAS  Google Scholar 

  52. Aujla SJ, Chan YR, Zheng M, et al.: IL-22 mediates mucosal host defense against gram-negative bacterial pneumonia. Nat Med 2008, 14:275–281.

    Article  PubMed  CAS  Google Scholar 

  53. Zheng Y, Valdez PA, Danilenko DM, et al.: Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008, 14:282–289.

    Article  PubMed  CAS  Google Scholar 

  54. Kreymborg K, Etzensperger R, Dumoutier L, et al.: IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 2007, 179:8098–8104.

    PubMed  CAS  Google Scholar 

  55. Wolk K, Kunz S, Witte E, et al.: IL-22 increases the innate immunity of tissues. Immunity 2004, 21:241–254.

    Article  PubMed  CAS  Google Scholar 

  56. Milner JD, Brenchley JM, Laurence A, et al.: Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 2008, 452:773–776.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Minegishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minegishi, Y., Karasuyama, H. Genetic origins of hyper-IgE syndrome. Curr Allergy Asthma Rep 8, 386–391 (2008). https://doi.org/10.1007/s11882-008-0075-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-008-0075-x

Keywords

Navigation