Skip to main content
Log in

What makes a food protein an allergen?

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Food allergens are almost always proteins, but not all food proteins are allergens. This one statement sums up the purpose of this article, defining the difference between an innocuous food protein and a food allergen. The simplest answer is that a food allergen has the ability to first elicit an IgE response, and then, on subsequent exposures, to elicit a clinical response to the same or similar protein. However, this simplistic answer avoids the more complex issues of defining the biochemical characteristics that allow a food protein to survive the extremes of food processing, escape the digestive enzymes of the human gastrointestinal tract, and interact with the immune system. More than 700 allergen sequences have been identified from food and nonfood sources. However, despite increasing knowledge of the structure and amino acid sequences of the identified allergens, only a few biochemical characteristics can be associated with food allergens. Food allergen characteristics, including abundance of the protein in the food; multiple, linear IgE binding epitopes; resistance of the protein to digestion and processing; and allergen structure are discussed, and the possible reasons they predispose some food proteins to become allergens are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. The Allergy Report: Anaphylactic and Anaphylactoid, vol 3. Milwaukee, WI: The American Academy of Allergy, Asthma, & Immunology, Inc., 2000:115–130.

    Google Scholar 

  2. Metcalfe DD, Sampson HA, Simon RA: Food Allergy: Adverse Reactions to Foods and Food Additives, edn 3. Malden, MA: Blackwell Publishing; 2003. Excellent review of clinical and basic science of food allergy.

    Google Scholar 

  3. Sampson HA: Food allergy. Part 1: immunopathogenesis and clinical disorders. J Allergy Clin Immunol 1999, 103:717–728.

    Article  CAS  PubMed  Google Scholar 

  4. Burks AW, Sampson HA: Food allergies in children. Curr Probl Pediatr 1993, 23:230–252.

    Article  CAS  PubMed  Google Scholar 

  5. Hefle SL, Nordlee JA, Taylor SL: Allergenic foods. Crit Rev Food Sci Nutr 1996, 36(Suppl):S69-S89.

    CAS  PubMed  Google Scholar 

  6. Aalberse RC: Food allergens. Environ Tox Pharm 1997, 4:55–60.

    Article  CAS  Google Scholar 

  7. Anderson JA, Sogn DD: Adverse Reactions to Foods. Publication No. 84-2442.Bethesda, MD: National Institutes of Health; 1984:1–6.

    Google Scholar 

  8. Stanley JS, Bannon GA: Biochemistry of food allergens. Clin Rev Allergy Immunol 1999, 17:279–291.

    CAS  PubMed  Google Scholar 

  9. Daul CB, Slattery M, Reese G, Lehrer SB: Identification of the major brown shrimp (Penaeus aztecus) as the muscle protein tropomyosin. Int Arch Allergy Immunol 1994, 105:49–55.

    CAS  PubMed  Google Scholar 

  10. Metcalfe DD, Astwood JD, Townsend R, et al.: Assessment of the allergenic potential of foods derived from genetically engineered crop plants. Crit Rev Food Sci Nutr 1996, 36:S165-S186.

    CAS  PubMed  Google Scholar 

  11. Elsayed S, Bennich H: The primary structure of allergen M from cod. Scand J Immunol 1975, 4:203–208.

    Article  CAS  PubMed  Google Scholar 

  12. Vila L, Beyer K, Jarvinen KM, et al.: Role of conformational and linear epitopes in the achievement of tolerance in cow’s milk allergy. Clin Exp Allergy 2001, 31:1599–1606.

    Article  CAS  PubMed  Google Scholar 

  13. Burks AW, Shin D, Cockrell G, et al.: Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. Eur J Biochem 1997, 245:334–339.

    Article  CAS  PubMed  Google Scholar 

  14. Stanley JS, King N, Burks AW, et al.: Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys 1997, 342:244–253.

    Article  CAS  PubMed  Google Scholar 

  15. Rabjohn P, Helm EM, Stanley JS, et al.: Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J Clin Invest 1999, 103:535–542.

    Article  CAS  PubMed  Google Scholar 

  16. Busse PJ, Jarvinen KM, Vila L, et al.: Identification of sequential IgE-binding epitopes on bovine alpha(s2)-casein in cow’s milk allergic patients. Int Arch Allergy Immunol 2002, 129:93–96.

    Article  CAS  PubMed  Google Scholar 

  17. Jarvinen KM, Chatchatee P, Bardina L, et al.: IgE and IgG binding epitopes on alpha-lactalbumin and beta-lactoglobulin in cow’s milk allergy. Int Arch Allergy Immunol 2001, 126:111–118.

    Article  CAS  PubMed  Google Scholar 

  18. Helm RM, Cockrell G, Connaughton C, et al.: A soybean G2 glycinin allergen. 2. Epitope mapping and three-dimensional modeling. Int Arch Allergy Immunol 2000, 123:213–219.

    Article  CAS  PubMed  Google Scholar 

  19. Ayuso R, Lehrer SB, Reese G: Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin). Int Arch Allergy Immunol 2002, 127:27–37.

    Article  CAS  PubMed  Google Scholar 

  20. Wang F, Robotham JM, Teuber SS, et al.: Ana o 1, a cashew (Anacardium occidental) allergen of the vicilin seed storage protein family. J Allergy Clin Immunol 2002, 110:160–166.

    Article  CAS  PubMed  Google Scholar 

  21. Marquez UM, Lajolo FM: Composition and digestibility of albumin, globulins, and glutelins from Phaseolus vulgaris. J Agric Food Chem 1981, 29:1068–1074.

    Article  CAS  PubMed  Google Scholar 

  22. Nielson SS: Degradation of bean proteins by endogenous and exogenous proteases: a review. Cereal Chem 1988, 65:433–442.

    Google Scholar 

  23. Zikakis JP, Rzucidlo SJ, Biasotto NO: Persistence of bovine milk xanthine oxidase activity after gastric digestion in vivo and in vitro. J Dairy Science 1977, 60:533–541.

    Article  CAS  Google Scholar 

  24. Petschow BW, Talbott RD: Reduction in virus-neutralizing activity of a bovine colostrum immunoglobulin concentrate by gastric acid and digestive enzymes. J Pediatr Gastroenterol Nutr 1994, 19:228–235.

    Article  CAS  PubMed  Google Scholar 

  25. Astwood JD, Leach JN, Fuchs RL: Stability of food allergens to digestion in vitro. Nat Biotechnol 1996, 14:1269–1273.

    Article  CAS  PubMed  Google Scholar 

  26. Astwood JD, Fuchs RL: Allergenicity of foods derived from transgenic plants. Monogr Allergy 1996, 32:105–120.

    CAS  PubMed  Google Scholar 

  27. Besler M, Steinhart H, Paschke A: Stability of food allergens and allergenicity of processed foods. J Chromatogr B Biomed Sci Appl 2001, 756:207–228.

    Article  CAS  PubMed  Google Scholar 

  28. Fu TJ, Abbott UR, Hatzos C: Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid: a comparative study. J Agric Food Chem 2002, 50:7154–7160.

    Article  CAS  PubMed  Google Scholar 

  29. Bannon GA, Goodman RE, Leach JN, et al.: Digestive stability in the context of assessing the potential allergenicity of food proteins. Comments on Toxicology 2002, 8:271–285.

    Article  CAS  Google Scholar 

  30. Buchanan BB, Adamidi C, Lozano RM, et al.: Thioredoxin-linked mitigation of allergic responses to wheat. Proc Natl Acad Sci U S A 1997, 94:5372–5377.

    Article  CAS  PubMed  Google Scholar 

  31. del Val G, Yee BC, Lozano RM, et al.: Thioredoxin treatment increases digestibility and lowers allergenicity of milk. J Allergy Clin Immunol 1999, 103:690–697.

    Article  PubMed  Google Scholar 

  32. Lehrer SB, Horner WE, Reese G: Why are some proteins allergenic? Implications for biotechnology. Crit Rev Food Sci Nutr 1996, 36:553–564.

    Article  CAS  PubMed  Google Scholar 

  33. Brownlow S, Morais-Cabral JH, Cooper R, et al.: Bovine betalactoglobulin at 1.8. A resolution: still an enigmatic lipocalin. Structure 1997, 5:481–495.

    Article  CAS  PubMed  Google Scholar 

  34. Peitsch MC: ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans 1996, 24:274–279.

    CAS  PubMed  Google Scholar 

  35. Ball G, Shelton MJ, Walsh BJ, et al.: A major continuous allergenic epitope of bovine beta-lactoglobulin recognized by human IgE binding. Clin Exp Allergy 1994, 24:758–764.

    Article  CAS  PubMed  Google Scholar 

  36. Kaminogawa S, Shimizu M, Ametani A, et al.: Monoclonal antibodies as probes for monitoring the denaturation process of bovine beta-lactoglobulin. Biochim Biophys Acta 1989, 998:50–56.

    CAS  PubMed  Google Scholar 

  37. Sen MM, Kopper R, Pons L, et al.: Protein structure plays a critical role in peanut allergen stability and may determine immunodominant IgE-binding epitopes. J Immunol 2002, 169:882–887.

    CAS  PubMed  Google Scholar 

  38. Stanley JS, King N, Burks AW, et al.: Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys 1997, 342:244–253.

    Article  CAS  PubMed  Google Scholar 

  39. Shin DS, Compadre CM, Maleki SM, et al.: Biochemical and structural analysis of the IgE binding sites on Ara h1, an abundant and highly allergenic peanut protein. J Biol Chem 1998, 273:13753–13759. A good example of the studies required to fully characterize a foodallergen protein.

    Article  CAS  PubMed  Google Scholar 

  40. Maleki SJ, Kopper RA, Shin DS, et al.: Structure of the major peanut allergen Ara h 1 may protect IgE-binding epitopes from degradation. J Immunol 2000, 164:5844–5849.

    CAS  PubMed  Google Scholar 

  41. Ivanciuc O, Schein CH, Braun W: SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res 2003, 31:359–362.

    Article  CAS  PubMed  Google Scholar 

  42. Sicherer SH, Furlong TJ, Maes HH, et al.: Genetics of peanut allergy: a twin study. J Allergy Clin Immunol 2000, 106(1 Pt 1):53–56. One of only a few examples in which the inheritance of a food allergy has been studied.

    Article  CAS  PubMed  Google Scholar 

  43. Herrick CA, Bottomly K: To respond or not to respond: T cells in allergic asthma. Nat Rev Immunol 2003, 3:405–412.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannon, G.A. What makes a food protein an allergen?. Curr Allergy Asthma Rep 4, 43–46 (2004). https://doi.org/10.1007/s11882-004-0042-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-004-0042-0

Keywords

Navigation