Skip to main content

Advertisement

Log in

Management of KRAS-Mutant Non-Small Cell Lung Cancer in the Era of Precision Medicine

  • Lung Cancer (HA Wakelee, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The discovery of genomic alterations that drive the development and progression of non-small cell lung cancer (NSCLC) has transformed how we treat metastatic disease. However, the promise of precision medicine remains elusive for the most commonly mutated oncogene in NSCLC, KRAS. This is perhaps due to the substantial heterogeneity within the broader genomic context of KRAS-mutant NSCLC. At this time, approaches for treating metastatic KRAS-mutant NSCLC mirror those for treating NSCLC that lacks a known driver mutation, including standard chemotherapeutic and immunotherapeutic approaches. Ongoing research aims to define further subgroups of KRAS-mutant NSCLC based on mutation subtype and co-occurring mutations. These efforts offer the potential to optimize standard-of-care regimens within these emerging subgroups and harness innovative strategies to realize precision medicine in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. International Agency for Research on Cancer, Lyon, France. 2013. http://globocan.iarc.fr/. Accessed 01 Mar 2018.

  3. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57. https://doi.org/10.1056/NEJMoa0810699.

    Article  PubMed  CAS  Google Scholar 

  4. Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L, Wolf J, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017;389(10072):917–29. https://doi.org/10.1016/S0140-6736(17)30123-X.

    Article  PubMed  CAS  Google Scholar 

  5. Cancer Genome Atlas Research. N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50. https://doi.org/10.1038/nature13385.

    Article  Google Scholar 

  6. Sholl LM, Aisner DL, Varella-Garcia M, Berry LD, Dias-Santagata D, Wistuba II, et al. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung cancer mutation consortium experience. J Thorac Oncol. 2015;10(5):768–77. https://doi.org/10.1097/JTO.0000000000000516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cancer Genome Atlas Research. N. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25. https://doi.org/10.1038/nature11404.

    Article  Google Scholar 

  8. Shepherd FA, Domerg C, Hainaut P, Janne PA, Pignon JP, Graziano S, et al. Pooled analysis of the prognostic and predictive effects of KRAS mutation status and KRAS mutation subtype in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. J Clin Oncol. 2013;31(17):2173–81. https://doi.org/10.1200/JCO.2012.48.1390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005;118(5):843–6. https://doi.org/10.1242/jcs.01660.

    Article  PubMed  CAS  Google Scholar 

  10. Pylayeva-Gupta Y, Grabocka E. Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev. Cancer. 2011;11(11):761–74. https://doi.org/10.1038/nrc3106.

    Article  PubMed  CAS  Google Scholar 

  11. Leone-Kabler S, Wessner LL, McEntee MF, D’Agostino RB Jr, Miller MS. Ki-ras mutations are an early event and correlate with tumor stage in transplacentally-induced murine lung tumors. Carcinogenesis. 1997;18(6):1163–8.

    Article  PubMed  CAS  Google Scholar 

  12. Wood K, Hensing T, Malik R, Salgia R. Prognostic and predictive value in KRAS in non-small-cell lung cancer: a review. JAMA Oncol. 2016;2(6):805–12. https://doi.org/10.1001/jamaoncol.2016.0405.

    Article  PubMed  Google Scholar 

  13. Riely GJ, Kris MG, Rosenbaum D, Marks J, Li A, Chitale DA, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res. 2008;14(18):5731–4. https://doi.org/10.1158/1078-0432.CCR-08-0646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ihle NT, Byers LA, Kim ES, Saintigny P, Lee JJ, Blumenschein GR, et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst. 2012;104(3):228–39. https://doi.org/10.1093/jnci/djr523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Floyd HS, Farnsworth CL, Kock ND, Mizesko MC, Little JL, Dance ST, et al. Conditional expression of the mutant Ki-rasG12C allele results in formation of benign lung adenomas: development of a novel mouse lung tumor model. Carcinogenesis. 2005;26(12):2196–206. https://doi.org/10.1093/carcin/bgi190.

    Article  PubMed  CAS  Google Scholar 

  16. Garassino MC, Marabese M, Rusconi P, Rulli E, Martelli O, Farina G, et al. Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann Oncol. 2011;22(1):235–7. https://doi.org/10.1093/annonc/mdq680.

    Article  PubMed  CAS  Google Scholar 

  17. Lee B, Lee T, Lee SH, Choi YL, Han J. Clinicopathologic characteristics of EGFR, KRAS, and ALK alterations in 6595 lung cancers. Oncotarget. 2016;7(17):23874–84. https://doi.org/10.18632/oncotarget.8074.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Benesova L, Minarik M, Jancarikova D, Belsanova B, Pesek M. Multiplicity of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC) patients treated with tyrosine kinase inhibitors. Anticancer Res. 2010;30(5):1667–71.

    PubMed  Google Scholar 

  19. Arbour KC, Jordan E, Kim HR, Dienstag J, Yu HA, Sanchez-Vega F, et al. Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer. Clin Cancer Res. 2018;24(2):334–40. https://doi.org/10.1158/1078-0432.CCR-17-1841. Retrospective analysis examining the importance of co-occurring mutations in advanced KRAS-mutant NSCLC. Patients harboring KEAP1/NFE2L2 co-mutations demonstrated a significantly shorter OS, including in those treated with immunotherapy.

  20. Yang L, Zhou Y, Li Y, Zhou J, Wu Y, Cui Y, et al. Mutations of p53 and KRAS activate NF-kappaB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett. 2015;357(2):520–6. https://doi.org/10.1016/j.canlet.2014.12.003.

    Article  PubMed  CAS  Google Scholar 

  21. Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2017;23(12):3012–24. https://doi.org/10.1158/1078-0432.CCR-16-2554.

    Article  PubMed  CAS  Google Scholar 

  22. Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T, et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature. 2012;483(7391):613–7. https://doi.org/10.1038/nature10937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Schabath MB, Welsh EA, Fulp WJ, Chen L, Teer JK, Thompson ZJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene. 2016;35(24):3209–16. https://doi.org/10.1038/onc.2015.375.

    Article  PubMed  CAS  Google Scholar 

  24. Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5(8):860–77. https://doi.org/10.1158/2159-8290.CD-14-1236. This is the most comprehensive study to date that has characterized the unique tumor attributes conferred by co-occurring mutations in KRAS-mutant lung adenocarcinoma.

  25. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature. 2007;448(7155):807–10. https://doi.org/10.1038/nature06030.

    Article  PubMed  CAS  Google Scholar 

  26. Koyama S, Akbay EA, Li YY, Aref AR, Skoulidis F, Herter-Sprie GS, et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res. 2016;76(5):999–1008. https://doi.org/10.1158/0008-5472.CAN-15-1439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kim J, Hu Z, Cai L, Li K, Choi E, Faubert B, et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature. 2017;546(7656):168–72. https://doi.org/10.1038/nature22359.This study suggests that metabolomics could be exploited in KRAS-mutant NSCLC subsets. Here, KRAS-mutant NSCLC with concomitant LKB1 loss resulted in metabolic reprogramming that could be exploited through therapeutic targeting.

  28. Zhang J, Nannapaneni S, Wang D, Liu F, Wang X, Jin R, et al. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status. Oncotarget. 2017;8(35):59008–22. https://doi.org/10.18632/oncotarget.19779.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schuster K, Venkateswaran N, Rabellino A, Girard L, Pena-Llopis S, Scaglioni PP. Nullifying the CDKN2AB locus promotes mutant K-ras lung tumorigenesis. Mol Cancer Res. 2014;12(6):912–23. https://doi.org/10.1158/1541-7786.MCR-13-0620-T.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tao Z, Le Blanc JM, Wang C, Zhan T, Zhuang H, Wang P, et al. Coadministration of trametinib and palbociclib radiosensitizes KRAS-mutant non-small cell lung cancers in vitro and in vivo. Clin Cancer Res. 2016;22(1):122–33. https://doi.org/10.1158/1078-0432.CCR-15-0589.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou J, Zhang S, Chen X, Zheng X, Yao Y, Lu G, et al. Palbociclib, a selective CDK4/6 inhibitor, enhances the effect of selumetinib in RAS-driven non-small cell lung cancer. Cancer Lett. 2017;408:130–7. https://doi.org/10.1016/j.canlet.2017.08.031.

    Article  PubMed  CAS  Google Scholar 

  32. Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med. 2017;23(11):1362–8. https://doi.org/10.1038/nm.4407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Shepherd FA, Lacas B, Le Teuff G, Hainaut P, Janne PA, Pignon JP, et al. Pooled analysis of the prognostic and predictive effects of TP53 comutation status combined with KRAS or EGFR mutation in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. J Clin Oncol. 2017;35(18):2018–27. https://doi.org/10.1200/JCO.2016.71.2893.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Calles A, Sholl LM, Rodig SJ, Pelton AK, Hornick JL, Butaney M, et al. Immunohistochemical loss of LKB1 is a biomarker for more aggressive biology in KRAS-mutant lung adenocarcinoma. Clin Cancer Res. 2015;21(12):2851–60. https://doi.org/10.1158/1078-0432.CCR-14-3112.

    Article  PubMed  CAS  Google Scholar 

  35. Facchinetti F, Bluthgen MV, Tergemina-Clain G, Faivre L, Pignon JP, Planchard D, et al. LKB1/STK11 mutations in non-small cell lung cancer patients: Descriptive analysis and prognostic value. Lung Cancer. 2017;112:62–8. https://doi.org/10.1016/j.lungcan.2017.08.002.

    Article  PubMed  Google Scholar 

  36. Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018; https://doi.org/10.1158/2159-8290.CD-18-0099. Retrospective analysis demonstrated inferior ORR, PFS, and OS in patients with metastatic KRAS-mutant lung adenocarcinoma with co-occurring STK11 mutations compared to TP53 co-mutations and TP53 WT/STK11 WT following PD-1/PD-L1 therapy. This analysis highlights the potential role of co-occurring mutations in predicting resistance to immunotherapy.

  37. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018; https://doi.org/10.1056/NEJMoa1801005.

  38. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. https://doi.org/10.1056/NEJMoa1606774.

    Article  PubMed  CAS  Google Scholar 

  39. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50. https://doi.org/10.1056/NEJMoa061884.

    Article  PubMed  CAS  Google Scholar 

  40. Patel JD, Socinski MA, Garon EB, Reynolds CH, Spigel DR, Olsen MR, et al. PointBreak: a randomized phase III study of pemetrexed plus carboplatin and bevacizumab followed by maintenance pemetrexed and bevacizumab versus paclitaxel plus carboplatin and bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small-cell lung cancer. J Clin Oncol. 2013;31(34):4349–57. https://doi.org/10.1200/JCO.2012.47.9626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39. https://doi.org/10.1056/NEJMoa1507643. Phase III trial that reported superior OS with nivolumab compared to docetaxel in patients with advanced non-squamous NSCLC who had progressed on platinum-based chemotherapy. A pre-planned subset analysis demonstrated an OS benefit favoring nivolumab over docetaxel in the KRAS-mutant group, with the hazard ratio for benefit being stronger than that observed in the overall patient population or in any other subgroup examined.

  42. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65. https://doi.org/10.1016/S0140-6736(16)32517-X. Phase III trial that reported superior OS with atezolizumab compared to docetaxel in patients with advanced NSCLC who had progressed on platinum-based chemotherapy. A pre-planned subset analysis demonstrated insignificant differences in OS between nivolumab and docetaxel in the KRAS-mutant group, although the subset analysis was likely limited by its small sample size as the hazard ratio point estimate was similar to the intent-to-treat trial population.

  43. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7.

    Article  PubMed  CAS  Google Scholar 

  44. Caiola E, Salles D, Frapolli R, Lupi M, Rotella G, Ronchi A, et al. Base excision repair-mediated resistance to cisplatin in KRAS(G12C) mutant NSCLC cells. Oncotarget. 2015;6(30):30072–87. https://doi.org/10.18632/oncotarget.5019.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oliver TG, Mercer KL, Sayles LC, Burke JR, Mendus D, Lovejoy KS, et al. Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes Dev. 2010;24(8):837–52. https://doi.org/10.1101/gad.1897010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Brady AK, McNeill JD, Judy B, Bauml J, Evans TL, Cohen RB, et al. Survival outcome according to KRAS mutation status in newly diagnosed patients with stage IV non-small cell lung cancer treated with platinum doublet chemotherapy. Oncotarget. 2015;6(30):30287–94. https://doi.org/10.18632/oncotarget.4711.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mellema WW, Dingemans AM, Thunnissen E, Snijders PJ, Derks J, Heideman DA, et al. KRAS mutations in advanced nonsquamous non-small-cell lung cancer patients treated with first-line platinum-based chemotherapy have no predictive value. J Thorac Oncol. 2013;8(9):1190–5. https://doi.org/10.1097/JTO.0b013e318298764e.

    Article  PubMed  CAS  Google Scholar 

  48. Kalikaki A, Koutsopoulos A, Hatzidaki D, Trypaki M, Kontopodis E, Stathopoulos E, et al. Clinical outcome of patients with non-small cell lung cancer receiving front-line chemotherapy according to EGFR and K-RAS mutation status. Lung Cancer. 2010;69(1):110–5. https://doi.org/10.1016/j.lungcan.2009.09.010.

    Article  PubMed  Google Scholar 

  49. Hames ML, Chen H, Iams W, Aston J, Lovly CM, Horn L. Correlation between KRAS mutation status and response to chemotherapy in patients with advanced non-small cell lung cancer. Lung Cancer. 2016;92:29–34. https://doi.org/10.1016/j.lungcan.2015.11.004.

    Article  PubMed  Google Scholar 

  50. Jia Y, Jiang T, Li X, Zhao C, Zhang L, Zhao S, et al. Characterization of distinct types of KRAS mutation and its impact on first-line platinum-based chemotherapy in Chinese patients with advanced non-small cell lung cancer. Oncol Lett. 2017;14(6):6525–32. https://doi.org/10.3892/ol.2017.7016.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Marabese M, Ganzinelli M, Garassino MC, Shepherd FA, Piva S, Caiola E, et al. KRAS mutations affect prognosis of non-small-cell lung cancer patients treated with first-line platinum containing chemotherapy. Oncotarget. 2015;6(32):34014–22. https://doi.org/10.18632/oncotarget.5607.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kerr EM, Martins CP. Metabolic rewiring in mutant Kras lung cancer. FEBS J. 2018;285(1):28–41. https://doi.org/10.1111/febs.14125.

    Article  PubMed  CAS  Google Scholar 

  53. Moran DM, Trusk PB, Pry K, Paz K, Sidransky D. Bacus SS. KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol Cancer Ther. 2014;13(6):1611–24. https://doi.org/10.1158/1535-7163.MCT-13-0649.

    Article  PubMed  CAS  Google Scholar 

  54. Levy B, Drilon A, Chachoua A, Seetharamu N, Richardson S, Lucido D, et al. KRAS mutations predict sensitivity to pemetrexed-based chemotherapy. Lung Cancer Management. 2013;2(4):275–280. https://doi.org/10.2217/lmt.13.32.

  55. Park S, Kim JY, Lee SH, Suh B, Keam B, Kim TM, et al. KRAS G12C mutation as a poor prognostic marker of pemetrexed treatment in non-small cell lung cancer. Korean J Intern Med. 2017;32(3):514–22. https://doi.org/10.3904/kjim.2015.299.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sun JM, Hwang DW, Ahn JS, Ahn MJ, Park K. Prognostic and predictive value of KRAS mutations in advanced non-small cell lung cancer. PLoS One. 2013;8(5):e64816. https://doi.org/10.1371/journal.pone.0064816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Camidge DR, Kono SA, Lu X, Okuyama S, Baron AE, Oton AB, et al. Anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer are associated with prolonged progression-free survival on pemetrexed. J Thorac Oncol. 2011;6(4):774–80. https://doi.org/10.1097/JTO.0b013e31820cf053.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17(4):351–9. https://doi.org/10.1038/ncb3124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Liu M, Bryant MS, Chen J, Lee S, Yaremko B, Lipari P, et al. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res. 1998;58(21):4947–56.

    PubMed  CAS  Google Scholar 

  60. Adjei AA, Mauer A, Bruzek L, Marks RS, Hillman S, Geyer S, et al. Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2003;21(9):1760–6. https://doi.org/10.1200/JCO.2003.09.075.

    Article  PubMed  CAS  Google Scholar 

  61. Johnson BE, Heymach JV. Farnesyl transferase inhibitors for patients with lung cancer. Clin Cancer Res. 2004;10(12 Pt 2):4254 s–7 s. https://doi.org/10.1158/1078-0432.CCR-040016.

    Article  Google Scholar 

  62. Lim SM, Westover KD, Ficarro SB, Harrison RA, Choi HG, Pacold ME, et al. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew Chem Int Ed Engl. 2014;53(1):199–204. https://doi.org/10.1002/anie.201307387.

    Article  PubMed  CAS  Google Scholar 

  63. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548–51. https://doi.org/10.1038/nature12796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Patricelli MP, Janes MR, Li LS, Hansen R, Peters U, Kessler LV, et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 2016;6(3):316–29. https://doi.org/10.1158/2159-8290.CD-15-1105.

    Article  PubMed  CAS  Google Scholar 

  65. Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell. 2018;172(3):578–89 e17. https://doi.org/10.1016/j.cell.2018.01.006. This study is the first to demonstrate activity of a direct KRASG12C inhibitor in in vivo tumor models.

  66. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37–40. https://doi.org/10.1038/35065000.

    Article  PubMed  CAS  Google Scholar 

  67. Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther. 2007;6(8):2209–19. https://doi.org/10.1158/1535-7163.MCT-07-0231.

    Article  PubMed  CAS  Google Scholar 

  68. Dry JR, Pavey S, Pratilas CA, Harbron C, Runswick S, Hodgson D, et al. Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res. 2010;70(6):2264–73. https://doi.org/10.1158/0008-5472.CAN-09-1577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Janne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 2013;14(1):38–47. https://doi.org/10.1016/S1470-2045(12)70489-8.

    Article  PubMed  CAS  Google Scholar 

  70. Janne PA, van den Heuvel MM, Barlesi F, Cobo M, Mazieres J, Crino L, et al. Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: the SELECT-1 Randomized Clinical Trial. JAMA. 2017;317(18):1844–53. https://doi.org/10.1001/jama.2017.3438. Phase III trial of selumetinib and docetaxel compared to docetaxel alone in patients with advanced KRAS-mutant NSCLC in the second-line setting that was negative for the primary endpoint of PFS. This trial represents the inherent challenges of targeting downstream effectors of mutated KRAS.

  71. Janne PA, Smith I, McWalter G, Mann H, Dougherty B, Walker J, et al. Impact of KRAS codon subtypes from a randomised phase II trial of selumetinib plus docetaxel in KRAS mutant advanced non-small-cell lung cancer. Br J Cancer. 2015;113(2):199–203. https://doi.org/10.1038/bjc.2015.215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM, et al. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 2009;69(10):4286–93. https://doi.org/10.1158/0008-5472.CAN-08-4765.

    Article  PubMed  CAS  Google Scholar 

  73. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14(12):1351–6. https://doi.org/10.1038/nm.1890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Blumenschein GR Jr, Smit EF, Planchard D, Kim DW, Cadranel J, De Pas T, et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann Oncol. 2015;26(5):894–901. https://doi.org/10.1093/annonc/mdv072.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gandara DR, Leighl N, Delord JP, Barlesi F, Bennouna J, Zalcman G, et al. A phase 1/1b study evaluating trametinib plus docetaxel or pemetrexed in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2017;12(3):556–66. https://doi.org/10.1016/j.jtho.2016.11.2218.

    Article  PubMed  Google Scholar 

  76. Ewen ME. Relationship between Ras pathways and cell cycle control. Prog Cell Cycle Res. 2000;4:1–17.

    PubMed  CAS  Google Scholar 

  77. Aktas H, Cai H, Cooper GM. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol Cell Biol. 1997;17(7):3850–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Puyol M, Martin A, Dubus P, Mulero F, Pizcueta P, Khan G, et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell. 2010;18(1):63–73. https://doi.org/10.1016/j.ccr.2010.05.025.

    Article  PubMed  CAS  Google Scholar 

  79. Mao CQ, Xiong MH, Liu Y, Shen S, Du XJ, Yang XZ, et al. Synthetic lethal therapy for KRAS mutant non-small-cell lung carcinoma with nanoparticle-mediated CDK4 siRNA delivery. Mol Ther. 2014;22(5):964–73. https://doi.org/10.1038/mt.2014.18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs. 2014;32(5):825–37. https://doi.org/10.1007/s10637-014-0120-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Shapiro G, Rosen LS, Tolcher AW, Goldman JW, Gandhi L, Papadopoulos KP, et al. A first-in-human phase I study of the CDK4/6 inhibitor, LY2835219, for patients with advanced cancer. J Clin Oncol. 2013;31(15_suppl):2500–2500.

  82. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6(7):740–53. https://doi.org/10.1158/2159-8290.CD-16-0095.

  83. Goldman JW, Mazieres J, Barlesi F, Koczywas M, Dragnev KH, Goksel T, et al. A randomized phase 3 study of abemaciclib versus erlotinib in previously treated patients with stage IV NSCLC with KRAS mutation: JUNIPER. J Clin Oncol. 2018;36(suppl; abstr 9025).

  84. Shapiro GI, Hilton J, Gandi L, Chau N, Cleary J, Wolanski A, et al. Abstract CT046: Phase I dose escalation study of the CDK4/6 inhibitor palbociclib in combination with the MEK inhibitor PD-0325901 in patients with RAS mutant solid tumors. Cancer Res. 2017;77(13_suppl):CT046-CT. https://doi.org/10.1158/1538-7445.AM2017-CT046.

    Article  Google Scholar 

  85. Zhang XH, Cheng Y, Shin JY, Kim JO, Oh JE, Kang JH. A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS. Cancer Biol Ther. 2013;14(7):597–605. https://doi.org/10.4161/cbt.24592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 2018;8(2):216–33. https://doi.org/10.1158/2159-8290.CD-17-0915.

    Article  PubMed  CAS  Google Scholar 

  87. Takezawa K, Okamoto I, Yonesaka K, Hatashita E, Yamada Y, Fukuoka M, et al. Sorafenib inhibits non-small cell lung cancer cell growth by targeting B-RAF in KRAS wild-type cells and C-RAF in KRAS mutant cells. Cancer Res. 2009;69(16):6515–21. https://doi.org/10.1158/0008-5472.CAN-09-1076.

    Article  PubMed  CAS  Google Scholar 

  88. Kelly RJ, Rajan A, Force J, Lopez-Chavez A, Keen C, Cao L, et al. Evaluation of KRAS mutations, angiogenic biomarkers, and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib. Clin Cancer Res. 2011;17(5):1190–9. https://doi.org/10.1158/1078-0432.CCR-10-2331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Dingemans AM, Mellema WW, Groen HJ, van Wijk A, Burgers SA, Kunst PW, et al. A phase II study of sorafenib in patients with platinum-pretreated, advanced (stage IIIb or IV) non-small cell lung cancer with a KRAS mutation. Clin Cancer Res. 2013;19(3):743–51. https://doi.org/10.1158/1078-0432.CCR-12-1779.

    Article  PubMed  CAS  Google Scholar 

  90. Paz-Ares L, Hirsh V, Zhang L, de Marinis F, Yang JC, Wakelee HA, et al. Monotherapy administration of sorafenib in patients with non-small cell lung cancer (MISSION) Trial: a phase III, multicenter, placebo-controlled trial of sorafenib in patients with relapsed or refractory predominantly nonsquamous non-small-cell lung cancer after 2 or 3 previous treatment regimens. J Thorac Oncol. 2015;10(12):1745–53. https://doi.org/10.1097/JTO.0000000000000693.

    Article  PubMed  CAS  Google Scholar 

  91. Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res. 2016;22(18):4585–93. https://doi.org/10.1158/1078-0432.CCR-15-3101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Lan B, Ma C, Zhang C, Chai S, Wang P, Ding L, et al. Association between PD-L1 expression and driver gene status in non-small-cell lung cancer: a meta-analysis. Oncotarget. 2018;9(7):7684–99. https://doi.org/10.18632/oncotarget.23969.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chen N, Fang W, Lin Z, Peng P, Wang J, Zhan J, et al. KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol Immunother. 2017;66(9):1175–87. https://doi.org/10.1007/s00262-017-2005-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Calles A, Liao X, Sholl LM, Rodig SJ, Freeman GJ, Butaney M, et al. Expression of PD-1 and its ligands, PD-L1 and PD-L2, in smokers and never smokers with KRAS-mutant lung cancer. J Thorac Oncol. 2015;10(12):1726–35. https://doi.org/10.1097/JTO.0000000000000687.

    Article  PubMed  CAS  Google Scholar 

  95. Ardizzoni A, Bidoli P, Chiari R, Bonomi L, Turci D, Landi L, et al. MA 02.05 nivolumab in advanced non-squamous NSCLC patients with KRAS mutations: results from the Italian Expanded Access Program (EAP). J Thorac Oncol. 2017;12(11):S1804. https://doi.org/10.1016/j.jtho.2017.09.454.

    Article  Google Scholar 

  96. Kim JH, Kim HS, Kim BJ. Prognostic value of KRAS mutation in advanced non-small-cell lung cancer treated with immune checkpoint inhibitors: a meta-analysis and review. Oncotarget. 2017;8(29):48248–52. https://doi.org/10.18632/oncotarget.17594.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Liu L, Mayes PA, Eastman S, Shi H, Yadavilli S, Zhang T, et al. The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin Cancer Res. 2015;21(7):1639–51. https://doi.org/10.1158/1078-0432.CCR-14-2339.

    Article  PubMed  CAS  Google Scholar 

  98. Ebert PJR, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M, et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity. 2016;44(3):609–21. https://doi.org/10.1016/j.immuni.2016.01.024.

    Article  PubMed  CAS  Google Scholar 

  99. Exelixis provides update on IMblaze370 phase 3 pivotal trial of atezolizumab and cobimetinib in patients with heavily pretreated locally advanced or metastatic colorectal cancer. South San Francisco, CA: Business Wire, 2018. https://www.businesswire.com/news/home/20180509006653/en/Exelixis-Update-IMblaze370-Phase-3-Pivotal-Trial. Accessed 11 May 2018.

  100. Lee JW, Zhang Y, Choi J, Sharma R, Park HS, Kaftan E, et al. Combination immunotherapy with MEK inhibitor for treatment of Kras-mutant lung cancer in animal model. Journal of Thoracic Oncology. 2017;12(1):S1319-S.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhmani K. Padda MD.

Ethics declarations

Conflict of Interest

Jacqueline V. Aredo declares that she has no conflict of interest. Sukhmani K. Padda has received compensation from AstraZeneca, G1 Therapeutics, Janssen, and AbbVie for service on advisory boards.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aredo, J.V., Padda, S.K. Management of KRAS-Mutant Non-Small Cell Lung Cancer in the Era of Precision Medicine. Curr. Treat. Options in Oncol. 19, 43 (2018). https://doi.org/10.1007/s11864-018-0557-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-018-0557-6

Keywords

Navigation