Skip to main content

Advertisement

Log in

Trabecular bone score (TBS) and bone mineral density in patients with long-term therapy with warfarin

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

In this study, we compared patients using the anticoagulant warfarin for more than a year with a control group with similar characteristics but without using the drug. We demonstrated worse BMD and bone quality by trabecular bone score (TBS) in patients using warfarin for more than 1 year.

Purpose

Evaluate the bone mineral density (BMD) and the trabecular bone score (TBS) of patients taking warfarin for more than 1 year compared with a control group.

Methods

Male patients aged 25–65 years in warfarin use for more than 1 year were included. Patients answered a questionnaire regarding lifestyle habits and realized a dual X-ray densitometry (DXA) (lumbar spine and hip), and TBS was evaluated.

Results

From the 96 patients invited, 33 patients accepted to participate and comprised the warfarin group (WG), and 3 were excluded. The control group (CG) was composed of 21 individuals matched by age and race. The mean age of WG was 57.0 ± 7.6 and in the CG 54.0 ± 10.6 years (p = 0.095). The BMD in WG was lower than that in the CG in all sites (spine p < 0.001, total hip p = 0.001, and femoral neck p = 0.005). A longer time of warfarin use increased the likelihood of having low BMD (OR = 1.239, CI 1.064–1.674, p = 0.01), whereas high BMI decreased it (OR = 0.732, CI 0.533–0.918, p = 0.03). The TBS was lower in WG than the CG (p = 0.04). Lower TBS was associated with hypertension in both groups and to the hip BMD (neck and total) (p < 0.005) in the WG. In the multivariate analysis, only hypertension (− 0.10, CI − 0.17 to − 0.03, p = 0.008) and total hip BMD ( 0.26, CI 0.07–0.46, p = 0.009) influenced TBS.

Conclusion

We demonstrated an association between worsening of BMD and bone quality in patients taking warfarin for more than 1 year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tufano A, et al (2015) Oral anticoagulant drugs and the risk of osteoporosis: new anticoagulants better than old?. Seminars in thrombosis and hemostasis. Vol. 41. No. 04. Thieme Medical Publishers

  2. Rezaieyazdi Z et al (2009) Reduced bone density in patients on long-term warfarin. Int J Rheum Dis 12(2):130–135

    Article  Google Scholar 

  3. Sato Y, Honda Y, Kunoh H, Oizumi K (1997) Long-term oral anticoagulation reduces bone mass in patients with previous hemispheric infarction and nonrheumatic atrial fibrillation. Stroke. 28(12):2390–2394

    Article  CAS  Google Scholar 

  4. Namba S, Yamaoka-Tojo M, Hashikata T, Ikeda Y, Kitasato L, Hashimoto T, Shimohama T, Tojo T, Takahira N, Masuda T, Ako J (2015) Long-term warfarin therapy and biomarkers for osteoporosis and atherosclerosis. BBA Clin 4:76–80. https://doi.org/10.1016/jbbacli201508002 eCollection 2015 Dec

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fusaro M et al (2015) Differential effects of dabigatran and warfarin on bone volume and structure in rats with normal renal function. PloS One 10(8):e0133847

    Article  Google Scholar 

  6. Barnes C, Newall F, Ignjatovic V, Wong P, Cameron F, Jones G, Monagle P (200) Reduced bone density in children on long-term warfarin. Pediatr Res 57(4):578–581

  7. Gu ZC, Zhou LY, Shen L, Zhang C, Pu J, Lin HW, Liu XY (2018) Non-vitamin K antagonist oral anticoagulants vs warfarin at risk of fractures: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 9:348. https://doi.org/10.3389/fphar.2018.00348 eCollection 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Philip WJ, Martin JC, Richardson JM, Reid DM, Webster J, Douglas AS (1995) Decreased axial and peripheral bone density in patients taking long-term warfarin. QJM. 88(9):635–640

    CAS  PubMed  Google Scholar 

  9. Fusaro M, Mereu MC, Aghi A, Iervasi G, Gallieni M (2017) Vitamin K and bone. Clin Cases Miner Bone Metab 14(2):200–206. https://doi.org/10.11138/ccmbm/2017.14.1.200

    Article  PubMed  PubMed Central  Google Scholar 

  10. McCloskey EV, Odén A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, PJM E, Fujita Y, Glüer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren Ö, Lorentzon M, Mellström D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JÁ (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31(5):940

    Article  Google Scholar 

  11. Zerbini CAF, Szejnfeld VL, Abergaria BH, McCloskey EV, Johansson H, Kanis JA (2015) Incidence of hip fracture in Brazil and the development of a FRAX model. Arch Osteoporos 10(1):1–7

    Article  Google Scholar 

  12. Zerbini CAF, Szejnfeld VL, Abergaria BH, McCloskey EV, Johansson H, Kanis JA (2015) Calculadora de FRAX. Publishing ABRASSO. https://abrasso.org.br/calculadora/calculadora. Accessed 11 December 2019

  13. Caraballo PJ, Heit JA, Atkinson EJ, Silverstein MD, O'Fallon WM, Castro MR, Melton LJ (1999) Long-term use of oral anticoagulants and the risk of fracture. Arch Intern Med 159(15):1750–1756

    Article  CAS  Google Scholar 

  14. Woo C, Chang LL, Ewing SK, Bauer DC (2008) Single-point assessment of warfarin use and risk of osteoporosis in elderly men. J Am Geriatr Soc 56(7):1171–1176. https://doi.org/10.1111/j.1532-5415.2008.01786.x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schwalfenberg GK (2017) Vitamins K1 and K2: The emerging group of vitamins required for human health. J Nutr Metab 2017:6254836. https://doi.org/10.1155/2017/6254836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Menon RK, Gill DS, Thomas M, Kernoff PB, Dandona P (1987) Impaired carboxylation of osteocalcin in warfarin-treated patients. J Clin Endocrinol Metab 64(1):59–61

    Article  CAS  Google Scholar 

  17. Bonaccorsi G, Cafarelli FP, Cervellati C et al (2019) A new corrective model to evaluate TBS in obese post-menopausal women: a cross-sectional study [published online ahead of print, 2019 Aug 30]. Aging Clin Exp Res. https://doi.org/10.1007/s40520-019-01317-0

  18. Ye Z, Lu H, Liu P (2017) Association between essential hypertension and bone mineral density: a systematic review and meta-analysis. Oncotarget 40(8):68916–68927. https://doi.org/10.18632/oncotarget.20325 eCollection 2017 Sep 15

    Article  Google Scholar 

  19. Us A (2018) The effects of diuretics on mineral and bone metabolism. Pediatr Endocrinol Rev 15(4):291–297. https://doi.org/10.17458/per.vol15.2018.a.DiureticsMineralBoneMetabolism

    Article  Google Scholar 

  20. Padlina I, Gonzalez-Rodriguez E, Hans D, Metzger D, Stoll D, Aubry-Rozier B, Lamy O (2017) The lumbar spine age-related degenerative disease influences the BMD not the TBS: the Osteolaus cohort. Osteoporos Int 28(3):909–915. https://doi.org/10.1007/s00198-016-3829-7

    Article  CAS  PubMed  Google Scholar 

  21. Avila ML, Pullenayegum E, Williams S, Shammas A, Stimec J, Sochett E, Marr K, Brandão LR (2016) Timing of low bone mineral density and predictors of bone mineral density trajectory in children on long-term warfarin: a longitudinal study. Osteoporos Int 27(4):1547–1557. https://doi.org/10.1007/s00198-015-3411-8

    Article  CAS  PubMed  Google Scholar 

  22. Gobbi B, Roncada C, Rodrigues AD (2016) Avaliação de vitamina D por estação do ano em adultos de uma cidade do Sul do Brasil. Rev Bras Anal Clin 48(4):341–345. https://doi.org/10.21877/2448-3877.201600482

    Article  Google Scholar 

  23. Santos BR, Mascarenhas LP, Satler F, Boguszewski MC, Spritzer PM (2012) Vitamin D deficiency in girls from South Brazil: a cross-sectional study on prevalence and association with vitamin D receptor gene variants. BMC Pediatr 12:62. Published 2012 Jun 8. https://doi.org/10.1186/1471-2431-12-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gajic-Veljanoski O, Phua CW, Shah PS, Cheung AM (2016) Effects of long-term low-molecular-weight heparin on fractures and bone density in non-pregnant adults: a systematic review with meta-analysis. J Gen Intern Med 31(8):947–957. https://doi.org/10.1007/s11606-016-3603-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlia Vieira Oberger Marques.

Ethics declarations

The study was approved by the ethics committee on human research at our institution (84042318.2.0000.0096), and all patients signed an informed consent form (ICF).

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, J.V.O., Nalevaiko, J.Z., Oliveira, M.F. et al. Trabecular bone score (TBS) and bone mineral density in patients with long-term therapy with warfarin. Arch Osteoporos 15, 102 (2020). https://doi.org/10.1007/s11657-020-00770-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-020-00770-z

Keywords

Navigation