Skip to main content
Log in

Characterization of a new tissue-engineered human skin equivalent with hair

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We designed a new tissue-engineered skin equivalent in which complete pilosebaceous units were integrated. This model was produced exclusively from human fibroblasts and keratinocytes and did not contain any synthetic material. Fibroblasts were cultured for 35 d with ascorbic acid and formed a thick fibrous sheet in the culture dish. The dermal equivalent was composed of stacked fibroblast sheets and exhibited some ultrastructural organization found in normal connective tissues. Keratinocytes seeded on this tissue formed a stratified and cornified epidermis and expressed typical markers of differentiation (keratin 10, filaggrin, and transglutaminase). After 4 wk of culture, a continuous and ultrastructurally organized basement membrane was observed and associated with the expression of laminin and collagen IV and VII. Complete pilosebaceous units were obtained by thermolysin digestion and inserted in this skin equivalent in order to assess the role of the transfollicular route in percutaneous absorption. The presence of hair follicles abolished the lag-time observed during hydrocortisone diffusion and increased significantly its rate of penetration in comparison to the control (skin equivalent with sham hair insertion). Therefore, this new hairy human skin equivalent model allowed an experimental design in which the only variable was the presence of pilosebaceous units and provided new data confirming the importance of hair follicles in percutaneous absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asselineau, D.; Bernard, B. A.; Bailly, C.; Darmon, M. Epidermal morphogenesis and indution of the 67K keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Exp. Cell. Res. 159:536–539; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Auger, F. A.; Lopez Valle, C. A.; Guignard, R.; Tremblay, N.; Noël, B.; Goulet, F.; Germain, L. Skin equivalent produced with human collagen. In Vitro Cell. Dev. Biol. Animal 31:432–439; 1995.

    CAS  Google Scholar 

  • Bell, E.; Ivarsson, B.; Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76:1274–1278; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Berthod, F.; Germain, L.; Guignard, R.; Lethias, C.; Garrone, R.; Damour, O.; van der Rest, M.; Auger, F. A. Differential expression of collagens XII and XIV in human skin and in reconstructed skin. J. Invest. Dermatol. 108:737–742; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Berthod, F.; Hayek, D.; Damour, O.; Collombel, C. Collagen synthesis by fibroblasts cultured within a collagen sponge. Biomaterials 14:749–754; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Birk, D. E.; Lisenmayer, T. F. Collagen fibril assembly, deposition, and organization into tissue-specific matrices. In: Yurchenco, P. D.; Birk, D. E.; Mecham, R. P., ed. Extracellular matrix assembly and structure. San Diego: Academic Press Inc; 1994:91–128.

    Google Scholar 

  • Black, A. F.; Berthod, F.; L’Heureux, N.; Germain, L.; Auger, F. A. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 12:1331–1340; 1998.

    PubMed  CAS  Google Scholar 

  • Boyce, S. T.; Williams, M. L. Lipid supplemented medium induces lamellar bodies and precursors of barrier lipids in cultured analogues of human skin. J. Invest. Dermatol. 101:180–184; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Chan, D.; Lamande, S. R.; Cole, W. G.; Bateman, J. F. Regulation of procollagen synthesis and processing during ascorbate-induced extracellular matrix accumulation in vitro. Biochem. J. 269:175–181; 1990.

    PubMed  CAS  Google Scholar 

  • Contard, P.; Bartel, R. L.; Jacobs II, L.; Perlish, J. S.; McDonald II, E. D.; Handler, L.; Cone, D.; Fleishmajer, R. Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone. J. Invest. Dermatol. 100:35–39; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Cotsarelis, G.; Sun, T. T.; Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Dale, B. A.; Resing, K. A.; Presland, R. B. Keratohyalin granule proteins. In: Leigh, I.; Lane, B.; Watt, F., ed. The keratinocyte handbook. New York: Cambridge University Press; 1994:323–350.

    Google Scholar 

  • Fleishmajer, R.; Contard, P.; Schwartz, E.; MacDonald, E. D.; Jacobs, L.; Sakai, L. Y. Elastin-associated microfibrils (10 nm) in a three-dimensional culture. J. Invest. Dermatol. 97:638–643; 1991.

    Article  Google Scholar 

  • Franz, T. J. Percutaneous absorption. On the relevance of in vitro data. J. Invest. Dermatol. 64:190–195; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E. Epidermal differentiation: the bare essentials. J. Cell. Biol. 111:2807–2814; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E. Keratins and the skin. Annu. Rev. Cell. Dev. Biol. 11:123–153; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Geesin, J. C.; Darr, D.; Kaufman, R.; Murad, S.; Pinnell, S. R. Ascorbic acid specifically increases type I and type III procollagen messenger RNA levels in human skin fibroblasts. J. Invest. Dermatol. 90:420–424; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Germain, L.; Auger, F. A. Tissue engineered biomaterials: biological and mechanical characteristics. In: Wise, D. L.; Trantolo, D. J.; Altobelli, D. A.; Yaszemski, M. J.; Gresser, J. D.; Schwartz, E. R., ed. Encyclopedic handbook of biomaterials and bioengineering. New York: Marcel Dekker; 1995:699–734.

    Google Scholar 

  • Germain, L.; Guignard, R.; Rouahbia, M.; Auger, F. A. Early basement membrane formation following the grafting of cultured epidermal sheets detached with thermolysin of dispase. Burns 21:175–180; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Germain, L.; Rouabhia, M.; Guignard, R.; Carrier, L.; Bouvard, V.; Auger, F. A. Improvement of human keratinocyte isolation and culture using thermolysin. Burns 2:99–104; 1993.

    Article  Google Scholar 

  • Green, H.; Kehinde, O.; Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 76:5665–5668; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Hata, R.; Senoo, H. l-ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of a three-dimensional tissue-like substance by skin fibroblasts. J. Cell. Physiol. 138:8–16; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Howes, D. A strategy for the assessment of percutaneous absorption. Toxic. in Vitro 8:851–853, 1994.

    Article  Google Scholar 

  • Hueber, F.; Schaefer, H.; Wépierre, J. Role of transepidermal and transfollicular routes in percutaneous absorption of steroids: in vitro studies on human skin. Skin Pharmacol. 7:237–244; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hueber, F.; Wépierre, J.; Schaefer, H. Role of transepidermal and transfollicular routes in percutaneous absorption of hydrocortisone and testosterone: in vivo study in the hairless rat. Skin Pharmacol. 5:99–107; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Illel, B.; Schaefer, H.; Wépierre, J.; Doucet, O. Follicles play an important role in percutaneous absorption. J. Pharm. Sci. 80:424–427; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Kao, J.; Hall, J.; Helman, G. In vitro percutaneous absorption in mouse skin: influence of skin appendages. Toxicol. Appl. Pharmacol. 94:93–103; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Lamandé, S. R.; Bateman, J. F. A mouse 3T6 fibroblast cell culture model for the study of normal and protein-engineered collagen synthesis and deposition into the extracellular matrix. Matrix 13:323–330; 1993.

    PubMed  Google Scholar 

  • Lauer, A. C.; Lieb, L. M.; Ramachandran, C.; Flynn, G. L.; Weiner, N. D. Transfollicular drug delivery. Pharmacol. Res. 12:179–186; 1995.

    Article  CAS  Google Scholar 

  • Lenoir, M.-C.; Bernard, B. A.; Pautrat, G.; Darmon, M.; Shroot, B. Outer root sheath cells of human hair follicle are able to regenerate a fully differentiated epidermis in vitro. Dev. Biol. 130:610–620; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Lenoir-Viale, M. C.; Galup, C.; Darmon, M.; Bernard, B. A. Epidermis reconstructed from the outer root sheath of human hair follicle. Effect of retinoic acid. Arch. Dermatol. Res. 285:197–204; 1993.

    Article  PubMed  CAS  Google Scholar 

  • L’Heureux, N.; Pâquet, S.; Labbé R.; Germain, L.; Auger, F. A. A completely biological tissue-engineered human blood vessel. FASEB J. 12:47–56; 1998.

    PubMed  CAS  Google Scholar 

  • Li, L.; Hoffman, R. M. Histoculture radiometric in vitro hair growth assay. In Vitro Cell. Dev. Biol. 29A:449–450; 1993.

    Google Scholar 

  • Li, L.; Hoffman, R. M. The feasibility of targeted selective gene therapy of the hair follicle. Nature Med. 1:705–706; 1995.

    Article  PubMed  Google Scholar 

  • Li, L.; Lishko, V.; Hoffman, R. M. A model for gene therapy of the hair growth processes. In Vitro Cell. Dev. Biol. 29A:258–260; 1993.

    CAS  Google Scholar 

  • Li, L.; Margolis, L. B.; Paus, R.; Hoffman, R. M. Hair shaft elongation, follicle growth, and spontaneous regression in long-term, gelatin sponge-supported histoculture of human scalp skin. Proc. Natl. Acad. Sci. USA 89:8764–8768; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Limat, A.; Breitkreutz, D.; Hunziker, T.; Boillat, C.; Wiesmann, U.; Klein, E.; Noser, F.; Fusenig, N. E. Restoration of the epidermal phenotype by follicular outer root sheath cells in recombinant culture with dermal fibroblasts. Exp. Cell. Res. 194:218–227; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Limat, A.; Noser, F. K. Serial cultivation of single keratinocytes from the outer root sheath of human scalp hair follicles. J. Invest. Dermatol. 87:485–488; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Mak, V. H. W.; Cumpstone, M. B.; Kennedy, A. H.; Harmon, C. S.; Guy, R. H.; Potts, R. O. Barrier function of human keratinocyte cultures grown at the air-liquid interface. J. Invest. Dermatol. 96:323–327; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Michel, M.; Auger, F. A.; Germain, L. Anchored skin equivalent cultured in vitro: a new tool for percutaneous absorption studies. In Vitro Cell. Dev. Biol. 29A:834–837; 1993.

    CAS  Google Scholar 

  • Michel, M.; Germain, L.; Bélanger, P. M.; Auger, F. A. Functional evaluation of anchored skin equivalent cultured in vitro: percutaneous absorption studies and lipid analysis. Pharmacol. Res. 12:455–458; 1995.

    Article  CAS  Google Scholar 

  • Michel, M.; L’Heureux, N.; Auger, F. A.; Germain, L. From newborn to adult: phenotypic and functional properties of skin equivalent and human skin as a function of donor age. J. Cell. Physiol. 171:179–189; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Michel, M.; Török, N.; Godbout, M.-J.; Lussier, M.; Gaudreau, P.; Royal, A.; Germain, L. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J. Cell Sci. 109:1017–1028; 1996.

    PubMed  CAS  Google Scholar 

  • Moll, I. Proliferative potential of different keratinocytes of plucked human hair follicles. J. Invest. Dermatol. 105:14–21; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Murad, S.; Tajima, S.; Johnson, G. R.; Sivarajah, A.; Pinell, S. R. Collagen synthesis in cultured human skin fibroblasts: effect of ascorbic acid and its analogs. J. Invest. Dermatol. 81:158–162; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Naughton, G. K.; Jacob, L.; Naughton, B. A. A physiological skin model for in vitro toxicity studies. Altern. Methods Toxicol. 7:183–189; 1989.

    CAS  Google Scholar 

  • Philpott, M. P.; Green, M. R.; Kealey, T. Human hair growth in vitro. J. Cell Sci. 97:463–471; 1990.

    PubMed  CAS  Google Scholar 

  • Philpott, M. P.; Sanders, D. A.; Kealey, T. Effects of insulin and insulin-like growth factors on cultured human hair follicles: IGF-I at physiologic concentrations is an important regulator of hair follicle growth in vitro. J. Invest. Dermatol. 102:857–861; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Pruniéras, M.; Régnier, M.; Fougère, S.; Woodley, D. Keratinocytes synthesize basal lamina proteins in culture. J. Invest. Dermatol. 81:74s-81s; 1983.

    Article  PubMed  Google Scholar 

  • Régnier, M.; Pruniéras, M.; Woodley, D. M. Growth and differentiation of adult human epidermal cells on dermal substrates. Front Matrix Biol. 9:4–35; 1981.

    Google Scholar 

  • Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Rochat, A.; Kobayashi, K.; Barrandon, Y. Location of stem cells of human hair follicles by clonal analysis. Cell 76:1063–1073; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rolland, A.; Wagner, N.; Chatelus, A.; Shroot, B.; Schaefer, H. Site-specific drug delivery to pilosebaceous structures using polymeric microspheres. Pharmacol. Res. 12:1738–1744; 1993.

    Google Scholar 

  • Scheuplein, R. J. Mechanism of percutaneous absorption II. Transient diffusion and the relative importance of various routes of skin penetration. J. Invest. Dermatol. 48:79–88; 1967.

    PubMed  CAS  Google Scholar 

  • Slivka, S. R.; Landeen, L. K.; Zeigler, F.; Zimber, M. P.; Bartel, R. L. Characterization, barrier function, and drug metabolism of an in vitro skin model. J. Invest. Dermatol. 100:40–46; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C.; Steinert, P. M. Protein composition of cornified cell envelopes of epidermal keratinocytes. J. Cell Sci. 107:693–700; 1994.

    PubMed  CAS  Google Scholar 

  • Tur, E.; Maibach, H. I.; Guy, R. H. Percutaneous penetration of methyl nicotinate at three anatomic sites: evidence for an appendageal contribution to transport? Skin Pharmacol. 4:230–234; 1991.

    PubMed  CAS  Google Scholar 

  • Yang, J. S.; Lavker, R. M.; Sun, T. T. Upper human hair follicle contains a subpopulation of keratinocytes with superior in vitro proliferative potential. J. Invest. Dermatol. 101:652–659; 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, M., L’Heureux, N., Pouliot, R. et al. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell.Dev.Biol.-Animal 35, 318–326 (1999). https://doi.org/10.1007/s11626-999-0081-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0081-x

Key words

Navigation