Skip to main content
Log in

Role of multidetector computed tomography in the anatomical definition of the left atrium-pulmonary vein complex in patients with atrial fibrillation. Personal experience and pictorial assay

Il ruolo della TCMD nella definizione anatomica del complesso atrio sinistro-vene polmonari nei pazienti affetti da fibrillazione atriale. Esperienza personale e rassegna iconografica

  • Cardiac Radiology/Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to illustrate the typical anatomical pattern and anatomical variants of the left atrium-pulmonary vein (LA-PV) complex studied by 16-slice multidetector computed tomography (MDCT) in a population of patients with atrial fibrillation (AF) undergoing percutaneous transcatheter left atrial ablation. Accurate knowledge of this anatomical region is fundamental for increasing the efficiency, efficacy and accuracy of the procedure and for reducing the risk of complications.

Materials and methods

From January 2004 to March 2007, we studied 75 patients (57 men, 18 women) affected by paroxysmal and chronic AF by using MDCT. In 63 patients, the MDCT examination was performed using retrospective cardiac electrocardiographic (ECG) gating and dose modulation, with reconstructions performed at 75% of R-R interval. In the remaining 12 patients, ECG gating was not possible due to high-frequency AF.

Results

We identified 286 PV: 157 right and 129 left. On the right side, eight PV were supernumerary and one was a common trunk, whereas on the left side, we found 22 common trunks and one supernumerary vein. In 61.3% of patients, the anatomical pattern was typical (two right and two left PV). In the remaining 38.7%, it was atypical [two right PV-left common trunk (26.6%); three right PV-two left PV (6.7%); three right PV-left common trunk (2.6%); three right PV-three left PV (1.3%); right common trunk-two left PV (1.3%)]. MDCT identified branching of the right inferior PV in 94.5%, of the right superior PV in 75.6%, of the left superior PV in 7.5% and of the left inferior PV in 7.5%; 3/8 of the right supernumerary veins presented branching. With respect to the left PV ostia, the position of the orifice of the 74 recognised appendages was high in 85.1%, intermediate in 12.1% and low in 2.8%. There was no association between PV anatomical variants and clinical presentation of AF (paroxysmal or chronic).

Conclusions

MDCT represents a fundamental diagnostic imaging tool in the anatomical definition of the LA-PV complex, which is characterised by considerable variability. Radiologists must be familiar with the anatomical variants and help the referring interventional electrophysiologist understand their importance.

Riassunto

Obiettivo

Illustrare quadro tipico e varianti anatomiche del complesso atrio sinistro-vene polmonari (AS-VP) studiato con TC spirale multidetettore a 16 strati (TCMD) in una popolazione di pazienti affetti da fibrillazione atriale (FA) in attesa di essere sottoposti ad intervento di ablazione trans-catetere in atrio sinistro. La precisa conoscenza di questa regione anatomica è indispensabile per realizzare con maggiore efficacia, efficienza ed accuratezza la procedura terapeutica, riducendo le complicanze.

Materiali e metodi

Nel periodo compreso tra gennaio 2004 e marzo 2007 sono stati valutati con TCMD 75 pazienti (57 maschi e 18 femmine) affetti da FA parossistica e cronica. In 63 pazienti l’indagine TCMD è stata effettuata con gating cardiaco retrospettivo e modulazione della dose, ricostruendo la finestra temporale corrispondente al 75% dell’intervallo RR dell’ECG. Nei restanti 12 pazienti non è stato possibile utilizzare il gating cardiaco per la presenza di FA ad alta frequenza.

Risultati

Nei pazienti studiati sono state identificate 286 VP, 157 a destra e 129 a sinistra. A destra sono state riconosciute 8 vene soprannumerarie e 1 tronco comune mentre a sinistra 22 tronchi comuni e 1 vena soprannumeraria. Nel 61,3% dei pazienti il quadro inadeanatomico era tipico (2 VP destre e sinistre) e atipico nel restante 38,7% dei pazienti (26,6% 2 VP destre-tronco comune sinistro; 6,7% 3 VP destre-2 VP sinistre; 2,6% 3 VP destre-tronco comune sinistro; 1,3% 3 VP destre-3 VP sinistre; 1,3% tronco comune destro-2 VP sinistre). Nella definizione dei rami di confluenza pre-ostiali delle VP (branching), la TCMD ha identificato il branching della VP inferiore destra nel 94,5% dei casi, della VP superiore destra nel 75,6%, della VP superiore sinistra nel 7,5% e della VP inferiore sinistra nel 7,5%; 3/8 delle vene soprannumerarie destre presentavano branching. Rispetto all’ostio delle VP sinistre, l’orifizio delle 74 auricole identificate era in posizione alta nel 85,1% dei casi, in posizione intermedia nel 12,1% e bassa nel 2,8%. Non sono state rilevate associazioni tra varianti anatomiche delle VP e presentazione clinica della FA (parossistica o cronica).

Conclusioni

La TCMD è uno strumento diagnostico fondamentale per definire l’anatomia del complesso AS-VP, la cui variabilità anatomica è elevata. Il radiologo deve conoscere le varianti anatomiche e farne capire l’importanza all’elettrofisiologo interventista.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Falk R (2001) Atrial fibrillation. N Engl J Med 344:1067–1077

    Article  PubMed  CAS  Google Scholar 

  2. Go AS, Hylek EM, Phillips KA et al (2001) Prevalence of diagnosed atrial fibrillation in adults. JAMA 285:2370–2375

    Article  PubMed  CAS  Google Scholar 

  3. Feinberg WM, Blackshear JL, Laupacis A et al (1995) Prevalence, age distribution and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med 155:469–473

    Article  PubMed  CAS  Google Scholar 

  4. Santini M, De Ferrari GM, Pandozi C et al (2004) Atrial fibrillation requiring urgent medical care. Approach and outcome in the various department of admission. Data from the atrial Fibrillation/flutter Italian Registry (FIRE). Ital Heart J 5:205–213

    PubMed  Google Scholar 

  5. Benjamin EJ, Wolf PA, D’Agostino RB et al (1998) Impact of atrial fibrillation on the risk of death. The Framingham Heart study. Circulation 98:946–952

    PubMed  CAS  Google Scholar 

  6. Wolf PA, Abbott RD, Kannel WB (1991) Atrial fibrillation as an indipendent risk factor for stroke: the Framingham Study. Stroke 22:983–988

    PubMed  CAS  Google Scholar 

  7. Luderitz B, Jung W (2000) Quality-oflife in patients with atrial fibrillation. Arch Intern Med 160:1749–1757

    Article  PubMed  CAS  Google Scholar 

  8. Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226

    Article  PubMed  CAS  Google Scholar 

  9. Allessie MA, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54:230–246

    Article  PubMed  CAS  Google Scholar 

  10. Ravelli F, Allessie MA (1997) Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation 96:1686–1695

    PubMed  CAS  Google Scholar 

  11. Ravelli F (2003) Mechano-electric feedback and atrial fibrillation. Prog Biophys Mol Biol 82:137–149

    Article  PubMed  Google Scholar 

  12. Cox JL, Boineau JP, Schuessler RB et al (1993) Five-year experience with the maze procedure for atrial fibrillation. Ann Thorac Surg 56:814–824

    PubMed  CAS  Google Scholar 

  13. Cox JL (2004) Surgical treatment of atrial fibrillation: a review. Europace 5:S20–S29

    Article  PubMed  Google Scholar 

  14. Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666

    Article  PubMed  CAS  Google Scholar 

  15. Haissaguerre M, Jais P, Shah DC et al (2000) Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation 101:1409–1417

    PubMed  CAS  Google Scholar 

  16. Keith A, Flack M (1907) The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol 41:172–189

    PubMed  CAS  Google Scholar 

  17. Nathan H, Eliakim M (1966) The junction between the left atrium and the pulmonary veins. An anatomic study of human hearts. Circulation 34:412–422

    PubMed  CAS  Google Scholar 

  18. Pappone C, Rosanio S, Oreto G et al (2000) Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation 102:2619–2628

    PubMed  CAS  Google Scholar 

  19. Pappone C, Oreto G, Rosanio S et al (2001) Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation: efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation 104:2539–2544

    Article  PubMed  CAS  Google Scholar 

  20. Arentz T, Jander N, von Rosenthal J et al (2003) Incidence of pulmonary vein stenosis 2 years after radiofrequency catheter ablation of refractory atrial fibrillation. European Heart Journal 24:963–969

    Article  PubMed  Google Scholar 

  21. Dill T, Neumann T, Ekinci O et al (2003) Pulmonary vein diameter reduction after radiofrequency catheter ablation for paroxysmal atrial fibrillation evaluated by contrast-enhanced three-dimensional magnetic resonance imaging. Circulation 107:845–850

    Article  PubMed  Google Scholar 

  22. Ravenel JG, McAdams HP (2002) Pulmonary venous infarcition after radiofrequency ablation for atrial fibrillation. AJR Am J Roentgenol 178:664–666

    PubMed  Google Scholar 

  23. Lacomis JM, Wigginton W, Fuhrman C et al (2003) Multi-detector row CT of the left atrium and pulmonary veins before radio-frequency catheter ablation for atrial fibrillation. RadioGraphics 23:S35–S48

    Article  PubMed  Google Scholar 

  24. Ghaye B, Szapiro D, Dacher JN et al (2003) Percutaneous ablation for atrial fibrillation: the role of cross-sectional imaging. RadioGraphics 23:S19–S33

    Article  PubMed  Google Scholar 

  25. Schwartzman D, Lacomis J, Wigginton G (2003) Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J Am Coll Cardiol 41:1349–1357

    Article  PubMed  Google Scholar 

  26. Perez-Lugones A, Schvartzman PR, Schweinkert R et al (2003) Three-dimensional reconstruction of pulmonary veins in patients with atrial fibrillation and controls: morphological characteristics and different veins. Pacing Clin Electrophysiol 26:8–15

    Article  PubMed  Google Scholar 

  27. Marom EM, Herndon JE, Kim Y-H et al (2004) Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology 230:43–49

    Article  Google Scholar 

  28. Maksimovic R, Cademartiri F, Scholten M et al (2004) Sixteen-row multislice computed tomography in the assessment of pulmonary veins prior to ablative treatment: validation vs conventional venography and study of reproducibility. Eur Radiol 14:368–374

    Article  Google Scholar 

  29. Cronin P, Sneider MB, Kazerooni EA et al (2004) MDCT of the left atrium and pulmonary veins in planning radiofrequency ablation for atrial fibrillation: a how-to guide. AJR Am J Roentgenol 183:767–778

    PubMed  Google Scholar 

  30. Centonze M, Del Greco M, Nollo G et al (2005) The role of multidetector CT in the evaluation of the left atrium and pulmonary veins anatomy before and after radio-frequency catheter ablation for atrial fibrillation. Preliminary results and work in progress. Radiol Med 110:52–60

    Google Scholar 

  31. Jongbloed MRM, Dirksen MS, Bax JJ et al (2005) Atrial fibrillation: multidetector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation-initial experience. Radiology 234:702–709

    Article  PubMed  Google Scholar 

  32. Kim Y-H, Marom EM, Herndon JE et al (2005) Pulmonary vein diameter, cross sectional area and shape: CT analysis. Radiology 235:43–49

    Article  PubMed  Google Scholar 

  33. Calkins H, Brugada J, Packer DL et al (2007) HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 4:816–861

    Article  PubMed  Google Scholar 

  34. Calkins H, Brugada J, Packer DL et al (2007) HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. Europace 9:335–379

    Article  PubMed  Google Scholar 

  35. Ho SY, Sanchez-Quintana D, Cabrera JA et al (1999) Anatomy of the left atrium: implications for radiofrequency ablation for atrial fibrillation. J Cardiovascular Electrophysiol 10:1525–1533

    Article  CAS  Google Scholar 

  36. Weiss C, Gocht A, Willems S et al (2002) Impact of the distribution and structure of myocardium in the pulmonary veins for radiofrequency ablation of atrial fibrillation. Pacing Clin Electrophysiol 25:1352–1356

    Article  PubMed  Google Scholar 

  37. Moubarak JB, Rozwadowski JV, Strzalka CT (2000) Pulmonary veinsleft atrial junction anatomic and histological study. Pacing Clin Electrophisiol. 23:1836–1838

    CAS  Google Scholar 

  38. Kato R, Lickfett L, Meininger G et al (2003) Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation 107:2004–2010

    Article  PubMed  Google Scholar 

  39. Cirillo S, Bonamini R, Gaita F et al (2004) Magnetic resonance angiography virtual endoscopy in the assessment of pulmonary veins before radiofrequency ablation procedures for atrial fibrillation. Eur Radiol 14:2053–2060

    Article  PubMed  CAS  Google Scholar 

  40. Cirillo S, Tosetti I, Gaita F et al (2005) Magnetic resonance angiography of the pulmonary veins before and after radiofrequency ablation for atrial fibrillation. Radiol Med 109:488–499

    Google Scholar 

  41. Moore KL (1973) The developing human (clinically oriented embryology). Saunders, Philadelphia

    Google Scholar 

  42. Bliss DF 2nd, Hutchins GM (1995) The dorsal mesocardium and development of the pulmonary veins in human embryos. Am J Cardiovasc Pathol 5:55–67

    Google Scholar 

  43. Chung B, Yucel EK, Rolnick J et al (2002) Morphology and variations of the pulmonary veins: classification and dimensions using 3D-CTA models (abstr). Radiology 225(P):155

    Google Scholar 

  44. Budorick NE, McDonald V, Flisak ME et al (1989) The pulmonary veins. Semin Roentgenol 24:127–140

    Article  PubMed  CAS  Google Scholar 

  45. Healey JE (1952) An anatomic survey of anomalous pulmonary veins: their clinical significance. J Thorac Surg 23:433–444

    PubMed  Google Scholar 

  46. Tsao HM, Wu MH, Yu WC et al (2001) Role of right middle pulmonary vein in patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 12:1353–1357

    Article  PubMed  CAS  Google Scholar 

  47. Yazar F, Ozdogmus O, Tuccar E et al (2002) Drainage patterns of middle lobe vein of right lung: an anatomical study. Eur J Cardiothorac Surg 22:717–720

    Article  PubMed  Google Scholar 

  48. Sugimoto S, Izumiyama O, Yamashita A et al (1998) Anatomy of inferior pulmonary vein should be clarified in lower lobectomy. Ann Thorac Surg 66:1799–1800

    Article  PubMed  CAS  Google Scholar 

  49. Kim DT, Lai AC, Hwang C et al (2000) The ligament of Marshall: a structural analysis in human hearts with implications for atrial arrhythmias. JACC 36:1324–1327

    PubMed  CAS  Google Scholar 

  50. Jongbloed MRM, Bax JJ, Lamb HJ et al (2005) Multislice computed tomography versus intracardiac echocardiography to evaluate the pulmonary veins before radiofrequency catheter ablation of atrial fibrillation. A head to head comparison. JACC 45:343–350

    PubMed  Google Scholar 

  51. Cappato R, Calkins H, Chen S-A et al (2005) Worldwide survey on the methodestro, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation 111:1100–1105

    Article  PubMed  Google Scholar 

  52. Tsao HM, Yu WC, Cheng HC et al (2001) Pulmonary vein dilation in patients with atrial fibrillation: detection by magnetic resonance imaging. J Cardiovasc Electrophysiol 12:1333–1334

    Article  Google Scholar 

  53. Saad BE, Rossillo A, Saad CP et al (2003) Pulmonary vein stenosis after radiofrequency ablation of atrial fibrillation: functional characterization, evolution, and influence of the ablation strategy. Circulation 108:3102–3107

    Article  PubMed  Google Scholar 

  54. Saad BE, Marrouche NF, Saad CP et al (2003) Pulmonary vein stenosis after catheter ablation of atrial fibrillation: emergence of a new clinical syndrome. Ann Intern Med 138:634–638

    PubMed  Google Scholar 

  55. Jin Y, Ross DL, Thomas SP (2004) Pulmonary vein stenosis and remodeling after electrical isolation for treatment of atrial fibrillation: short-and medium-term follow-up. PACE 27:1362–1370

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Centonze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benini, K., Marini, M., Del Greco, M. et al. Role of multidetector computed tomography in the anatomical definition of the left atrium-pulmonary vein complex in patients with atrial fibrillation. Personal experience and pictorial assay. Radiol med 113, 779–798 (2008). https://doi.org/10.1007/s11547-008-0299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-008-0299-9

Keywords

Parole chiave

Navigation