Skip to main content
Log in

Einfluss von Vitamin D auf Knochen und Muskel

Influence of vitamin D on bones and muscle

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Vitamin-D-Metabolismus

Vitamin D wird in der Leber in die Speicherform 25-Hydroxy-Vitamin D umgewandelt. Die weitere Aktivierung zum Hormon 1,25-Dihydroxy-Vitamin D (Kalzitriol) findet streng reguliert in der Niere statt, kann aber auch lokal in Zielorganen erfolgen, z. B. auch in Knochenzellen. Effekte auf Muskel und Knochen zählen zu den klassischen Vitamin-D-Wirkungen. Kalzitriol wirkt am Muskel über den nukleären Vitamin-D-Rezeptor, daneben aber auch über nichtgenomische Wege. Es steigert die Synthese von Muskelproteinen und moduliert die Differenzierung der Muskelzellen.

Vitamin-D-Mangel

Er führt zu Muskelschwäche (typisch für Rachitis und Osteomalazie). Interventionsstudien zeigten bei älteren Menschen mit Vitamin-D-Mangel eine Verbesserung der Muskelfunktion mit Reduktion der Sturzrate durch Vitamin-D-Gabe. Am Knochen hat Kalzitriol sowohl anabole als auch katabole Effekte. Infolge verbesserter intestinaler Absorption wird mehr Kalzium und Phosphat zur Mineralisierung zur Verfügung gestellt. Kalzitriol wirkt zudem direkt auf die Proliferation und Differenzierung von Knochenzellen und auf die Bildung von alkalischer Phosphatase und Matrixproteinen (z. B. Osteokalzin, Osteopontin). Somit reguliert es die Mineralisation im Knochen in direkter Weise. In hohen Konzentrationen stimuliert Kalzitriol aber auch die Knochenresorption. Personen mit ausgeprägtem Vitamin-D-Mangel weisen ein erhöhtes Knochenbruchrisiko auf. Dieses kann durch Vitamin-D-Supplementierung verringert werden.

Vitamin-D-Supplementierung

Als optimal wird die tägliche Dosierung mit 800–2000 IU Vitamin D3 angesehen. In der Pharmakotherapie metabolischer Osteopathien verbessern aktive Metaboliten (Kalzitriol, Alfakalzidol, Parikalzitol) Sturzhäufigkeit und Muskelfunktion und senken die Frakturrate.

Abstract

Vitamin D metabolism

Vitamin D is converted in the liver to 25-hydroxyvitamin D, which represents the storage form and is the most abundant circulating metabolite. The further activation (1-α-hydroxylation) leads to the hormone 1‑α,25-dihydroxyvitamin D (calcitriol), which takes place in the kidneys under hormonal control and contributes to circulating calcitriol but some target organs (such as bone) can produce calcitriol in an autocrine/paracrine fashion. Muscle and bone are the classical target organs for calcitriol. The hormone calcitriol has direct effects on muscle tissue, which are mediated by the nuclear vitamin D receptor (VDR) and also by non-genomic pathways (membrane receptors). Calcitriol modulates differentiation of muscle cells and stimulates protein synthesis.

Vitamin D deficiency

Vitamin D deficiency leads to muscle weakness, which is prominent in patients with rickets and osteomalacia; however, even subclinical vitamin D deficiency is associated with diminished muscle function. In populations with vitamin D deficiency (e. g. elderly people), controlled intervention studies with vitamin D demonstrated improved muscle function and reduction in falls. In bone, calcitriol exerts anabolic and catabolic effects. Calcitriol stimulates intestinal absorption of calcium and phosphate providing mineral supply for bone mineralization. Calcitriol also has direct effects on proliferation and differentiation of bone cells. Calcitriol stimulates alkaline phosphatase and regulates bone matrix proteins (such as osteocalcin and osteopontin); therefore, calcitriol regulates mineralization in a direct manner. In high concentrations calcitriol also stimulates bone resorption. People with severe vitamin D deficiency have a higher risk for fractures. Vitamin D supplementation can reduce the risk of fractures.

Vitamin D supplementation

The best evidence exists for the daily administration of 800–2000 IU of vitamin D. Active vitamin D metabolites (also called vitamin D receptor agonists), such as calcitriol, alfacalcidol (1-α-hydroxyvitamin D) and paricalcitol are used for the pharmacological treatment of metabolic bone diseases and in these conditions reduce falls, improve muscle function and reduce the risk of fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Annweiler C, Montero-Odasso M, Schott AM, Berrut G, Fantino B, Beauchet O (2010) Fall prevention and vitamin D in the elderly: an overview of the key role of the non-bone effects. J Neuroeng Rehabil 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  2. Beckman MJ, Johnson JA, Goff JP, Reinhardt TA, Beitz DC, Horst RL (1995) The role of dietary calcium in the physiology of vitamin D toxicity: excess dietary vitamin D3 blunts parathyroid hormone induction of kidney 1‑hydroxylase. Arch Biochem Biophys 319:535–539

    Article  CAS  PubMed  Google Scholar 

  3. Bikle D (2009) Nonclassic actions of vitamin D. J Clin Endocrinol Metab 94:26–34

    Article  CAS  PubMed  Google Scholar 

  4. Bischoff HA, Stahelin HB, Urscheler N, Ehrsam R, Vonthein R, Perrig-Chiello P, Tyndall A, Theiler R (1999) Muscle strength in the elderly: its relation to vitamin D metabolites. Arch Phys Med Rehabil 80:54–58

    Article  CAS  PubMed  Google Scholar 

  5. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang YQ, Karlson EW et al (2004) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged >60 y. Am J Clin Nutr 80:752–758

    CAS  PubMed  Google Scholar 

  6. Bischoff-Ferrari HA, Willett WC, Orav EJ, Lips P, Meunier PJ, Lyons RA, Flicker L, Wark J, Jackson RD, Cauley JA, Meyer HE, Pfeifer M, Sanders KM, Stähelin HB, Theiler R, Dawson-Hughes B (2012) A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med 367:40–49

    Article  CAS  PubMed  Google Scholar 

  7. Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, Dick W, Willett WC, Egli A (2016) Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med (in press) doi:10.1001/jamainternmed2015.7148

    Google Scholar 

  8. Bleicher K, Cumming RG, Naganathan V, Blyth FM, Le Couteur DG, Handelsman DJ, Waite LM, Seibel MJ (2014) U‑shaped association between serum 25-Hydroxyvitamin D and fracture risk in older men: results from the Prospective Population-based CHAMP Study. J Bone Miner Res 29:2024–2031

    Article  CAS  PubMed  Google Scholar 

  9. Bolland MJ, Grey A, Gamble GD, Reid IR (2014) The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol 2:307–320

    Article  CAS  PubMed  Google Scholar 

  10. Bruyére O, Cavalier E, Souberbielle J‑C, Bischoff-Ferrari HA, Beaudart C, Buckinx F, Reginster J‑Y, Rizzoli R (2014) Effects of vitamin D in the elderly population: current status and perspectives. Arch Public Health 72:32

    Article  PubMed  PubMed Central  Google Scholar 

  11. Buitrago C, Pardo VG, Boland R (2013) Role of VDR in 1a,25-dihydroxyvitamin D3 – dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J Steroid Biochem Mol Biol 136:125–130

    Article  CAS  PubMed  Google Scholar 

  12. Chapuy MC, Arlot ME, Duboeuf F et al (1992) Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med 327:1637–1642

    Article  CAS  PubMed  Google Scholar 

  13. Chapuy MC, Schott AM, Garnero P et al (1996) Healthy elderly French women living at home have secondary hyperparathyroidism and high bone turnover in winter. J Clin Endocrinol Metab 81:1129–1133

    CAS  PubMed  Google Scholar 

  14. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337:670–676

    Article  CAS  PubMed  Google Scholar 

  15. Dukas L, Schacht E, Mazor Z, Stähelin HB (2005) Treatment with alfacalcidol in elderly people significantly decreases the high risk of falls associated with a low creatinine clearance of. Osteoporos Int 16:198–203

    Article  CAS  PubMed  Google Scholar 

  16. Ensrud KE, Ewing SK, Fredman et al (2010) Circulating 25-hydroxyvitamin D levels and frailty status in older women. J Clin Endocrinol Metab 95:5266–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faulkner KA, Cauley JA, Zmuda JM, Landsittel DP, Newman AB, Studenski SA, Redfern MS, Ensrud KE, Fink HA, Lane NE, Nevitt MC (2006) Higher 1,25-dihydroxyvitamin D3 concentrations associated with lower fall rates in older community-dwelling women. Osteoporos Int 17:1318–1328

    Article  CAS  PubMed  Google Scholar 

  18. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN (2011) 1,25(OH)2 vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 152:2976–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gillespie LD, Robertson MC, Gillespie WJ, Cherrington C, Gates S, Clemson LM, Lamb SE (2012) Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 9:CD007146

    PubMed  Google Scholar 

  20. Hansen KE, Johnson RE, Chambers KR, Johnson MG, Lemon CC, Vo TN, Marvdashti S (2015) Treatment of vitamin D insufficiency in postmenopausal women. A randomized clinical trial. JAMA Intern Med 175:1612–1621

    Article  PubMed  Google Scholar 

  21. Halfon M, Phan O, Teta D (2015) Vitamin D: a review on its effects on muscle strength, the risk of fall, and frailty. Biomed Res Int 2015 doi:10.1155/2015/953241

    PubMed  PubMed Central  Google Scholar 

  22. Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh J, Jurutka PW (2013) Molecular mechanisms of vitamin D action. Calcif Tissue Int 92:77–98

    Article  CAS  PubMed  Google Scholar 

  23. Jones A, Hansen KE (2009) Recognizing the musculoskeletal manifestations of vitamin D deficiency. J Musculoskelet Med 26:389–396

    PubMed  PubMed Central  Google Scholar 

  24. Kahles S (2016) Immuneffekte von Vitamin D und Typ-1-Diabetes. Diabetologe 12 doi:10.1007/s11428-016-0096-3

    Google Scholar 

  25. Kaji H (2014) Interaction between muscle and bone. J Bone Metab 21:29–40

    Article  PubMed  PubMed Central  Google Scholar 

  26. Macdonald HM, Wood AD, Aucott LS, Black AJ, Fraser WD, Mavroeidi A, Reid DM, Secombers KR, Simpson WG, Thies F (2013) Hip bone loss is attenuated with 1000 IU but not 400 IU daily vitamin D3: A 1‑year double-blind RCT in postmenopausal women. J Bone Miner Res 28:2202–2213

    Article  CAS  PubMed  Google Scholar 

  27. Papadimitropoulos E, Wells G, Shea B, Gillespie W, Weaver B, Zytaruk N, Cranney A, Adachi J, Tugwell P, Josse R, Greenwood C, Guyatt G (2002) Osteoporosis Methodology Group and the osteoporosis research advisory group. Endocr Rev 23:560–569

    Article  CAS  PubMed  Google Scholar 

  28. Pfeifer M, Begerow B, Minne HW, Abrams C, Nachtigall D, Hansen C (2000) Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women. J Bone Miner Res 15:1113–1118

    Article  CAS  PubMed  Google Scholar 

  29. Pike JW (2014) Expression of the vitamin D receptor in skeletal muscle: Are we there yet? Endocrinology 155:3214–3218

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pojednic RM, Ceglia L, Olsson K, Gustafsson T, Lichtenstein AH, Dawson-Hughes B, Fielding RA (2015) Effects of 1,25-Dihydroxyvitamin D3 and vitamin D3 on the expression of the vitamin D receptor in human skeletal muscle cells. Calcif Tissue Int 96:256–263

    Article  CAS  PubMed  Google Scholar 

  31. Raue F (2013) Therapie mit Vitamin D in der Praxis. J Miner Stoffwechs 20:91–94

    Google Scholar 

  32. Ringe JD, Farahmand P, Schacht E, Rozehnal A (2007) Superiority of a combined treatment of Alendronat and Alfacalcidol compared to the combination of Alendronate and plain vitamin D or Alfacalcidol alone in established postmenopausal or male osteoporosis (AAC-Trial). Rheumatol Int 27:425–434

    Article  CAS  PubMed  Google Scholar 

  33. Ringe JD, Schacht E (2012) Plain vitamin D or alfacalcidol as follow-up treatment of postmenopausal osteoporosis after continous long-term once weekly bisphosphonate intake. Osteology 21:83–87

    Google Scholar 

  34. Rizzoli R, Boonen S, Brandi ML, Bruyere O, Cooper C, Kanis JA, Kaufman JM, Ringe JD, Weryha G (2013) Review. Vitamin D supplementation in elderly or postmenopausal women: a 2013 update fo the 2008 recommendations from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Curr Med Res Opin 29:1–9

    Article  Google Scholar 

  35. Sanders KM, Stuart AL, Williamson EJ, Simpston JA, Kotowicz MA, Young D, Nicholson G (2010) Annual high-dose oral vitamin D and falls and fractures in older women. A randomized controlled trial. JAMA 303:1815–1822

    Article  CAS  PubMed  Google Scholar 

  36. Schacht E, Ringe JD (2012) Alfacalcidol improves muscle power, muscle function and balance in elderly patients with reduced bone mass. Rheumatol Int 32:207–215

    Article  CAS  PubMed  Google Scholar 

  37. Scharla SH, Strong DD, Rosen C, Mohan S, Holick M, Baylink DJ, Linkhart TA (1993) 1,25-dihydroxyvitamin D3 increases secretion of insulin-like growth factor binding protein-4 (IGFBP-4) by human osteoblast-like cells in vitro and elevates IGFBP-4 serum levels in vivo. J Clin Endocrinol Metab 77:1190–1197

    CAS  PubMed  Google Scholar 

  38. Scharla SH, Scheidt-Nave C, Leidig G, Woitge H, Wüster C, Seibel MJ, Ziegler R (1996) Lower serum 25-hydroxyvitamin D is associated with increased bone resorption markers and lower bone density at the proximal femur in normal females. A population-based study. Exp Clin Endocrinol Diabetes 104:289–292

    Article  CAS  PubMed  Google Scholar 

  39. Scharla SH, Schacht E, Bawey S, Kamilli I, Holle D, Lempert UG (2003) Pleiotropic effects of alfacalcidol in elderly patients with rheumatoid arthritis. Arthritis Rheuma 23:268–274

    Google Scholar 

  40. Scharla S (2011) Vitamin D und Muskel. Nieren- Hochdruckkrankheiten 40:473–476

    Article  CAS  Google Scholar 

  41. Scharla SH, Lempert UG, Schultz K (2014) Vitamin D Deficiency and ist Relation to Physical Capacity in Patients with chronic obstructive pulmonary disease (COPD). Osteoporos Int 25(Suppl 2):351

    Google Scholar 

  42. Scharla SH (2015) Osteomalazie und sonstige Formen der Mineralisationsstörung. In: Lehnert H (Hrsg) Rationelle Diagnostik und Therapie in Endokrinologie, Diabetologie und Stoffwechsel. Thieme-Verlag, Stuttgart, S 186–195

    Google Scholar 

  43. Siggelkow H (2016) Vitamin D‑Analytik. Diabetologe 12 doi:10.1007/s11428-016-0099-0

    Google Scholar 

  44. Scott D, Ebeling PR, Sanders KM, Aitken D, Winzenberg T, Jones G (2015) Vitamin D and physical activity status: associations with five-year changes in body composition and muscle function in community-dwelling older adults. J Clin Endocrinol Metab 100:670–678

    Article  CAS  PubMed  Google Scholar 

  45. Smith H, Anderson F, Raphael H, Maslin P, Crozier S, Cooper C (2007) Effect of annual intramuscular vitamin D on fracture risk in elderly men and women – a population-based, randomized, double-blind, placebo-controlled trial. Rheumatology (Oxford) 46:1852–1857

    Article  CAS  Google Scholar 

  46. Sorensen OH, Lund BI, Saltin B, Lund BJ, Anderson RB, Hyorth L, Melson F, Mosekilde L (1979) Myopathy in bone loss of ageing: Improvement by treatment with 1a-hydroxycholecalciferol and calcium. Clin Sci 56:157–161

    Article  CAS  PubMed  Google Scholar 

  47. Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL (2011) Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int 22:859–871

    CAS  PubMed  Google Scholar 

  48. The RECORD Trial Group (2005) Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D): a randomised placebo-controlled trial. Lancet 365:1621–1628

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Scharla.

Ethics declarations

Interessenkonflikt

S. Scharla gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scharla, S. Einfluss von Vitamin D auf Knochen und Muskel. Diabetologe 12, 261–268 (2016). https://doi.org/10.1007/s11428-016-0101-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-016-0101-x

Schlüsselwörter

Keywords

Navigation