Skip to main content
Log in

Die Darm-Leber-Achse bei nichtalkoholischer Fettlebererkrankung: molekulare Mechanismen und neue Targets

The gut–liver axis in nonalcoholic fatty liver disease: molecular mechanisms and new targets

  • Schwerpunkt
  • Published:
Der Gastroenterologe Aims and scope

Zusammenfassung

Die nichtalkoholische Fettlebererkrankung (NAFLD) ist mit weiter steigender Inzidenz die weltweit häufigste Lebererkrankung. Während Adipositas der wichtigste Risikofaktor für die Entstehung einer NAFLD ist, demonstrieren aktuelle Forschungsarbeiten, dass neben genetischen Faktoren und westlicher Diät die Darm-Leber-Achse und besonders die intestinale Mikrobiota eine Schlüsselrolle während der Krankheitsprogression spielen. Eine ungünstige Komposition der Mikrobiota beeinflusst nicht nur den Leberstoffwechsel, sondern moduliert durch mikrobielle Moleküle und Metaboliten das inflammatorische Milieu in der Leber. Hier zeigen sich vielversprechende Regelkreise für die zukünftige Diagnostik und Therapie.

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the world’s most common liver disease and the incidence is continuously rising. While obesity is the most important risk factor for development of NAFLD, recent data show that in addition to genetic factors and western diet, the gut–liver axis and especially the intestinal microbiota play a key role during disease progression. An unfavorable composition of the microbiota not only affects liver metabolism, but also modulates the inflammatory microenvironment in the liver through microbial molecules and metabolites. A better understanding of these molecular circuits may unearth promising targets for future diagnostics and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Hepatology. https://doi.org/10.1002/hep.25762

    Article  PubMed  Google Scholar 

  2. Brandl K, Schnabl B (2017) Intestinal microbiota and nonalcoholic steatohepatitis. Curr Opin Gastroenterol 33:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roeb E, Steffen HM, Bantel H, Baumann U, Canbay A, Demir M et al (2015) S2k Guideline non-alcoholic fatty liver disease. Z Gastroenterol 53(7):668–723

    CAS  PubMed  Google Scholar 

  4. Yki-Jarvinen H (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabet Endocrinol 2(11):901–910

    CAS  Google Scholar 

  5. Servier Medical Art by Servier (2019) Webpräsenz. https://smart.servier.com/. Zugegriffen: Oktober 2019

  6. Brown GT, Kleiner DE (2016) Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism. https://doi.org/10.1016/j.metabol.2015.11.008

    Article  PubMed  Google Scholar 

  7. Tacke F, Kroy DC, Barreiros AP, Neumann UP (2016) Liver transplantation in Germany. Liver Transpl. https://doi.org/10.1002/lt.24461

    Article  PubMed  Google Scholar 

  8. Kolodziejczyk AA, Zheng D, Shibolet O, Elinav E (2019) The role of the microbiome in NAFLD and NASH. EMBO Mol Med. https://doi.org/10.15252/emmm.201809302

    Article  PubMed  Google Scholar 

  9. Macpherson AJ, Heikenwalder M, Ganal-Vonarburg SC (2016) The liver at the nexus of host-microbial interactions. Cell Host Microbe 20:561–571

    Article  CAS  PubMed  Google Scholar 

  10. Schneider KM, Albers S, Trautwein C (2018) Role of bile acids in the gut-liver axis. J Hepatol 68:1083–1085. https://doi.org/10.1016/j.jhep.2017.11.025

    Article  PubMed  Google Scholar 

  11. Ursell LK, Metcalf JL, Parfrey LW, Knight R (2012) Defining the human microbiome. Nutr Rev. https://doi.org/10.1111/j.1753-4887.2012.00493.x

    Article  PubMed  Google Scholar 

  12. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature. https://doi.org/10.1038/nature08821

    Article  PubMed  PubMed Central  Google Scholar 

  13. Caussy C, Tripathi A, Humphrey G, Bassirian S, Singh S, Faulkner C, Bettencourt R, Rizo E, Richards L, Xu ZZ, Downes MR, Evans RM, Brenner DA, Sirlin CB, Knight R, Loomba R (2019) A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat Commun. https://doi.org/10.1038/s41467-019-09455-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y, Dorofeyev A, Romanenko M, Tkach S, Sineok L, Lushchak O, Vaiserman A (2017) Association between body mass index and firmicutes/bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. https://doi.org/10.1186/s12866-017-1027-1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schwimmer JB, Johnson JS, Angeles JE, Behling C, Belt PH, Borecki I, Bross C, Durelle J, Goyal NP, Hamilton G, Holtz ML, Lavine JE, Mitreva M, Newton KP, Pan A, Simpson PM, Sirlin CB, Sodergren E, Tyagi R, Yates KP, Weinstock G, Salzman NH (2019) Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology. https://doi.org/10.1053/j.gastro.2019.06.028

    Article  PubMed  Google Scholar 

  16. Kolodziejczyk AA, Zheng D, Elinav E (2019) Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol. https://doi.org/10.1038/s41579-019-0256-8

    Article  PubMed  Google Scholar 

  17. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17:219–232

    Article  CAS  PubMed  Google Scholar 

  18. Zaneveld JR, McMinds R, Thurber RV (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. https://doi.org/10.1038/nmicrobiol.2017.121

    Article  PubMed  Google Scholar 

  19. Chiang JYL (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966. https://doi.org/10.1194/jlr.R900010-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wahlström A, Sayin SI, Marschall HU, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:41–50

    Article  PubMed  Google Scholar 

  21. Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651

    Article  CAS  PubMed  Google Scholar 

  22. Modica S, Petruzzelli M, Bellafante E, Murzilli S, Salvatore L, Celli N, Di Tullio G, Palasciano G, Moustafa T, Halilbasic E, Trauner M, Moschetta A (2012) Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology. https://doi.org/10.1053/j.gastro.2011.10.028

    Article  PubMed  Google Scholar 

  23. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185. https://doi.org/10.1038/nature10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balakrishnan A, Polli JE (2006) Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharmacol 3(3):223–230

    Article  CAS  Google Scholar 

  25. Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, Atkins AR, Khvat A, Schnabl B, Yu RT, Brenner DA, Coulter S, Liddle C, Schoonjans K, Olefsky JM, Saltiel AR, Downes M, Evans RM (2015) Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. https://doi.org/10.1038/nm.3760

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, Cai J, Qi Y, Fang ZZ, Takahashi S, Tanaka N, Desai D, Amin SG, Albert I, Patterson AD, Gonzalez FJ (2015) Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest. https://doi.org/10.1172/JCI76738

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chow MD, Lee YH, Guo GL (2017) The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med 56:34–44. https://doi.org/10.1016/j.mam.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, Mastrandrea L, Buck MJ, Baker RD, Genco RJ, Zhu R, Zhu L (2018) Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut. https://doi.org/10.1136/gutjnl-2017-314307

    Article  PubMed  Google Scholar 

  29. Evans JM, Morris LS, Marchesi JR (2013) The gut microbiome: the role of a virtual organ in the endocrinology of the host. J Endocrinol 218(3):R37–47. https://doi.org/10.1530/JOE-13-0131

    Article  CAS  PubMed  Google Scholar 

  30. Arnold JW, Roach J, Azcarate-Peril MA (2016) Emerging technologies for gut microbiome research. Trends Microbiol 24(11):887–901. https://doi.org/10.1016/j.tim.2016.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rau M, Rehman A, Dittrich M, Groen AK, Hermanns HM, Seyfried F, Beyersdorf N, Dandekar T, Rosenstiel P, Geier A (2018) Fecal SCFas and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T‑cell activation and advanced disease. United European Gastroenterol J. https://doi.org/10.1177/2050640618804444

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gill PA, van Zelm MC, Muir JG, Gibson PR (2018) Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther 48(1):15–34. https://doi.org/10.1111/apt.14689

    Article  CAS  PubMed  Google Scholar 

  33. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. https://doi.org/10.1038/ncomms2852

    Article  PubMed  Google Scholar 

  34. Descamps HC, Herrmann B, Wiredu D, Thaiss CA (2019) The path toward using microbial metabolites as therapies. EBioMedicine 44:747–754. https://doi.org/10.1016/j.ebiom.2019.05.063

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C, Dohnalová L, Braverman S, Rozin S, Malitsky S, Dori-Bachash M, Kuperman Y, Biton I, Gertler A, Harmelin A, Shapiro H, Halpern Z, Aharoni A, Segal E, Elinav E (2016) Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540:544–551. https://doi.org/10.1038/nature20796

    Article  CAS  PubMed  Google Scholar 

  36. Yuan J, Chen C, Cui J, Lu J, Yan C, Wei X, Zhao X, Li N, Li S, Xue G, Cheng W, Li B, Li H, Lin W, Tian C, Zhao J, Han J, An D, Zhang Q, Wei H, Zheng M, Ma X, Li W, Chen X, Zhang Z, Zeng H, Ying S, Wu J, Yang R, Liu D (2019) Fatty liver disease caused by high-alcohol-producing klebsiella pneumoniae. Cell Metab 30:675–688.e7. https://doi.org/10.1016/j.cmet.2019.08.018

    Article  CAS  PubMed  Google Scholar 

  37. Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, Braverman S, Tengeler AC, Barak O, Elazar M, Ben-Zeev R, Lehavi-Regev D, Katz MN, Pevsner-Fischer M, Gertler A, Halpern Z, Harmelin A, Aamar S, Serradas P, Grosfeld A, Shapiro H, Geiger B, Elinav E (2018) Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359:1376–1383. https://doi.org/10.1126/science.aar3318

    Article  CAS  PubMed  Google Scholar 

  38. Sorribas M, Jakob MO, Yilmaz B, Li H, Stutz D, Noser Y, de Gottardi A, Moghadamrad S, Hassan M, Albillos A, Francés R, Juanola O, Spadoni I, Rescigno M, Wiest R (2019) FxR-modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J Hepatol. https://doi.org/10.1016/j.jhep.2019.06.017

    Article  PubMed  PubMed Central  Google Scholar 

  39. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne NM, de Barsy M, Loumaye A, Hermans MP, Thissen JP, de Vos WM, Cani PD (2019) Supplementation with akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25(7):1096–1103. https://doi.org/10.1038/s41591-019-0495-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shogbesan O, Poudel DR, Victor S, Jehangir A, Fadahunsi O, Shogbesan G, Donato A (2018) A systematic review of the efficacy and safety of fecal microbiota transplant for clostridium difficile infection in Immunocompromised patients. Can J Gastroenterol Hepatol 2018:1394379. https://doi.org/10.1155/2018/1394379

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schneider KM, Bieghs V, Heymann F, Hu W, Dreymueller D, Liao L, Frissen M, Ludwig A, Gassler N, Pabst O, Latz E, Sellge G, Penders J, Tacke F, Trautwein C (2015) CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology 62:1405–1416. https://doi.org/10.1002/hep.27982

    Article  CAS  PubMed  Google Scholar 

  42. Bajaj JS, Salzman NH, Acharya C, Sterling RK, White MB, Gavis EA, Fagan A, Hayward M, Holtz ML, Matherly S, Lee H, Osman M, Siddiqui MS, Fuchs M, Puri P, Sikaroodi M, Gillevet PM (2019) Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial. Hepatology. https://doi.org/10.1002/hep.30690

    Article  PubMed  Google Scholar 

  43. Parnell JA, Raman M, Rioux KP, Reimer RA (2012) The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int 32(5):701–711. https://doi.org/10.1111/j.1478-3231.2011.02730.x

    Article  CAS  PubMed  Google Scholar 

  44. Carlson JL, Erickson JM, Lloyd BB, Slavin JL (2018) Health effects and sources of prebiotic dietary fiber. Curr Dev Nutr. https://doi.org/10.1093/cdn/nzy005

    Article  PubMed  PubMed Central  Google Scholar 

  45. Macfarlane S, Macfarlane GT, Cummings JH (2006) Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24(5):701–714

    Article  CAS  PubMed  Google Scholar 

  46. Tarantino G, Finelli C (2015) Systematic review on intervention with prebiotics/probiotics in patients with obesity-related nonalcoholic fatty liver disease. Future Microbiol 10(5):889–902. https://doi.org/10.2217/fmb.15.13

    Article  CAS  PubMed  Google Scholar 

  47. Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguilera Olvera R, Lapek JD, Zhang L, Wang WB, Hao S, Flythe MD, Gonzalez DJ, Cani PD, Conejo-Garcia JR, Xiong N, Kennett MJ, Joe B, Patterson AD, Gewirtz AT, Vijay-Kumar M (2018) Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell. https://doi.org/10.1016/j.cell.2018.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  48. Younossi Z, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, Bedossa P, Geier A, Beckebaum S, Newsome P, Sheridan D, Trotter J, Knapple W, Lawitz E, Kowdley K, Montano-Loza A, Boursier J, Mathurin P, Bugianesi E, Mazzella G, Olveira A, Cortez-Pinto H, Graupera I, Orr D, Gluud LL, Dufour J‑F, Shapiro D, Campagna J, Zaru L, MacConell L, Shringarpure R, Harrison S, Sanyal A (2019) GS-06-positive results from REGENERATE: a phase 3 international, randomized, placebo-controlled study evaluating obeticholic acid treatment for NASH. J Hepatol. https://doi.org/10.1016/s0618-8278(19)30006-4

    Article  PubMed  Google Scholar 

  49. Nicholes K, Guillet S, Tomlinson E, Hillan K, Wright B, Frantz GD, Pham TA, Dillard-Telm L, Tsai SP, Stephan JP, Stinson J, Stewart T, French DM (2002) A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol. https://doi.org/10.1016/S0002-9440(10)61177-7

    Article  PubMed  PubMed Central  Google Scholar 

  50. Harrison SA, Rinella ME, Abdelmalek MF, Trotter JF, Paredes AH, Arnold HL, Kugelmas M, Bashir MR, Jaros MJ, Ling L, Rossi SJ, DePaoli AM, Loomba R (2018) NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. https://doi.org/10.1016/S0140-6736(18)30474-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Markus Schneider.

Ethics declarations

Interessenkonflikt

K.M. Schneider und C. Trautwein geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

C. Trautwein, Aachen

S. Zeuzem, Frankfurt a.M.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, K.M., Trautwein, C. Die Darm-Leber-Achse bei nichtalkoholischer Fettlebererkrankung: molekulare Mechanismen und neue Targets. Gastroenterologe 15, 112–122 (2020). https://doi.org/10.1007/s11377-019-00402-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11377-019-00402-0

Schlüsselwörter

Keywords

Navigation