Skip to main content
Log in

The essential role of FoxO6 phosphorylation in aging and calorie restriction

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Changes in the activities of FoxOs caused by phosphorylation, acetylation, or ubiquitination induce expressional changes in the genes involved in the modulation of oxidative stress by modifying histones and chromatins and can substantially alter cellular functions during aging and age-related diseases. However, the precise role that FoxO6, a novel member of the FoxO class of transcription factors, plays in the aging kidney has not been determined. The purpose of this study was to determine the role played by FoxO6 in the maintenance of redox homeostasis in HEK293T cells and aged kidney tissues isolated from ad libitum (AL)-fed and 40 % calorie restriction (CR) rats. The results obtained from AL-fed rats showed that diminished FoxO6 activity during aging was caused by FoxO6 phosphorylation, which disabled its transcriptional activity. In contrast, CR rats were found to have significantly higher FoxO6 activities and maintained redox balance. To determine the molecular mechanism responsible for FoxO6 modification by age-related oxidative stress, we examined H2O2-treated HEK293T cells in which FoxO6 was inactivated by phosphorylation and found that H2O2-induced oxidative stress promoted FoxO6 phosphorylation via PI3K/Akt signaling. The results of this study show that the protective role of FoxO6 in the aging process may in part be related to its ability to attenuate oxidative stress by upregulating catalase expression, as shown in CR. This delineation of the role of FoxO6 expands understanding of the pathological and physiological mechanisms of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426

    Article  CAS  PubMed  Google Scholar 

  • Barthel A, Schmoll D, Unterman TG (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16:183–189

    Article  CAS  PubMed  Google Scholar 

  • Birkenkamp KU, Coffer PJ (2003) Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 31:292–297

    Article  CAS  PubMed  Google Scholar 

  • Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    Article  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  • Burgering BM, Medema RH (2003) Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73:689–701

    Article  CAS  PubMed  Google Scholar 

  • Chang WH, Liu TC, Yang WK, Lee CC, Lin YH, Chen TY, Chang JG (2011) Amiloride modulates alternative splicing in leukemic cells and resensitizes Bcr-AblT315l mutant cells to imatinib. Cancer Res 71:383–392

    Article  CAS  PubMed  Google Scholar 

  • Chung HY, Lee EK, Choi YJ, Kim JM, Kim DH, Zou Y, Kim CH, Lee J, Kim HS, Kim ND, Jung JH, Yu BP (2011) Molecular inflammation as an underlying mechanism of the aging process and age-related diseases. J Dent Res 90:830–840

    Article  CAS  PubMed  Google Scholar 

  • Chung SY, Huang WC, Su CW, Lee KW, Chi HC, Lin CT, Chen ST, Huang KM, Tsai MS, Yu HP, Chen SL (2013) FoxO6 and PGC-1a form a regulatory loop in myogenic cells. Biosci Rep 33:485–497

    Article  CAS  Google Scholar 

  • Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B (2006) Atrophy-related ubiquitin ligases, atrogin-1, and MuRF1 are up-regulated in aged rat tibialis anterior muscle. Mech Aging Dev 127:794–801

    Article  CAS  PubMed  Google Scholar 

  • Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ (2003) Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor 1 levels and increased life span. Endocrinology 144:3799–3810

    Article  CAS  PubMed  Google Scholar 

  • de Magalhães JP, Church GM (2006) Cells discover fire: employing reactive oxygen species in development and consequences for aging. Exp Gerontol 41:1–10

    Article  PubMed  Google Scholar 

  • de Magalhães JP, Wuttke D, Wood SH, Plank M, Vora C (2012) Genome-environment interactions that modulate aging: powerful targets for drug discovery. Pharmacol Rev 64:88–101

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Habr EA, Tsiorva P, Theodorou M, Levidou G, Korkolopoulou P, Vretakos G, Petraki L, Michalopoulos NV, Patsouris E, Saetta AA (2010) Analysis of PIK3CA and B-RAF gene mutations in human astrocytomas: association with activation of ERK and AKT. Clin Neuropathol 29:239–245

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka M, Daitoku H, Hatta M, Matsuzaki H, Umemura S, Fukamizu A (2003) Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation. Int J Mol Med 12:503–508

    CAS  PubMed  Google Scholar 

  • Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13:1385–1393

    CAS  PubMed  Google Scholar 

  • Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278:35959–35967

    Article  CAS  PubMed  Google Scholar 

  • Jian B, Yang S, Chen D, Chaudry I, Raju R (2011) Influence of aging and hemorrhage injury on Sirt1 expression: possible role of myc-Sirt1 regulation in mitochondrial function. Biochim Biophys Acta 12:1446–1451

    Article  Google Scholar 

  • Karger S, Weidinger C, Krause K, Sheu SY, Aigner T, Gimm O, Schmid KW, Dralle H, Fuhrer D (2009) FOXO3a: a novel player in thyroid carcinogenesis? Endocrinol Relat Cancer 16:189–199

    Article  CAS  Google Scholar 

  • Kim HS, Skurk C, Maatz H, Shiojima I, Ivashchenko Y, Yoon SW, Park YB, Walsh K (2005) Akt/FoxO3a signaling modulates the endothelial stress response through regulation of heat shock protein 70 expression. FASEB J 19:1042–1044

    CAS  PubMed  Google Scholar 

  • Kim DH, Kim JY, Yu BP, Chung HY (2008) The activation of NF-kappaB through Akt-induced FOXO1 phosphorylation during aging and its modulation by calorie restriction. Biogerontology 9:33–47

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Perdomo G, Zhang T, Slusher S, Lee S, Phillips BE, Fan Y, Giannoukakis N, Gramignoli R, Strom S, Ringquist S, Dong HH (2011) FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes 60:2763–2774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleindorp R, Flachsbart F, Puca AA, Malovini A, Schreiber S, Nebel A (2011) Candidate gene study of FoxO1, FoxO4, and FoxO6 reveals no association with human longevity in Germans. Aging Cell 10:622–628

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Dansn TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la lglesia N, Gygi S, Blackwell TK, Bonni A (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends lifespan. Cell 125:987–1001

    Article  CAS  PubMed  Google Scholar 

  • Li M, Chiu JF, Mossman BT, Fukaqawa NK (2006) Down-regulation of manganese-superoxide dismutase through phosphorylation of FOXO3a by Akt in explanted vascular smooth muscle cells from old rats. J Biol Chem 281:40429–40439

    Article  CAS  PubMed  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Hron JD, Peng SL (2004) Regulation of NF-κB, Th activation, and autoinflammation by the Forkhead transcription factor Foxo3a. Immunity 21:203–213

    Article  CAS  PubMed  Google Scholar 

  • Ni Z, Ebata A, Alipanahiramandi E, Lee SS (2012) Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell 11:315–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen MD, Luo X, Biteau B, Syverson K, Jasper H (2008) 14-3-3 Epsilon antagonizes FoxO to control growth, apoptosis and longevity in Drosophila. Aging Cell 7:688–699

    Article  CAS  PubMed  Google Scholar 

  • Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA (2005) JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A 102:4494–4499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ribarič S (2012) Diet and aging. Oxidative Med Cell Longev 2012:2012

    Google Scholar 

  • Senapedis WT, Kennedy CJ, Boyle PM, Silver PA (2011) Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain. Mol Biol Cell 22:1791–1805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stepanyan Z, Hughes B, Cliché DO, Camp D, Hekimi S (2006) Genetic and molecular characterization of CLK-1/mCLK1, a conserved determinant of the rate of aging. Exp Gerontol 41:940–951

    Article  CAS  PubMed  Google Scholar 

  • Tang ED, Nunez G, Barr FG, Guan KL (1999) Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274:16741–16746

    Article  CAS  PubMed  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends lifespan and impairs neuroendocrine function. Science 292:107–110

    Article  CAS  PubMed  Google Scholar 

  • Van der Heide LP, Hoekman MFM, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380:297–309

    Article  Google Scholar 

  • Yamaza H, Komatsu T, Wakita S, Kijogi C, Park S, Hayashi H, Chiba T, Mori R, Furuyama T, Mori N, Shimokawa I (2010) FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell 9:372–382

    Article  CAS  PubMed  Google Scholar 

  • Yu BP (2005) Calorie restriction as a potent anti-aging intervention: suppression of oxidative stress. In: Suresh Rattan (ed) Aging intervention and therapies, World Sci. Pub, p 193-217

  • Yuan Z, Becker EB, Merlo P, Yamada T, DiBacco S, Konishi Y, Schaefer EM, Bonni A (2008) Activation of FoxO1 by cdk1 in cycling cells and postmitotic neurons. Science 319:1665–1668

    Article  CAS  PubMed  Google Scholar 

  • Zanichelli F, Capasso S, di Bernardo G, Cipollaro M, Pagnotta E, Carteni M, Casale F, Iori R, Giordano A, Galderisi U (2012) Low concentrations of isothiocyanates protect mesenchymal stem cells from oxidative injuries, while high concentrations exacerbate DNA damage. Apoptosis 17:964–974

    Article  CAS  PubMed  Google Scholar 

  • Zemva J, Schilbach K, Stohr O, Moll L, Franko A, Krone W, Wiesner RJ, Schubert M (2012) Central FoxO3a and FoxO6 expression is down-regulated in obesity induced diabetes but not in aging. Exp Clin Endocrinol Diabetes 120:340–350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) (Grant no. 2009-0083538). We also take this opportunity to thank the Aging Tissue Bank (Busan, Republic of Korea) for supplying research materials.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Young Chung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Interactions of FoxO6 in HEK293T kidney cells. Nuclear extracts were prepared from young and old rat kidneys. Immunoprecipitated FoxO6 was found to be physically associated with p-FoxO6 and 14-3-3 β by Western blotting. (PPT 243 kb)

Figure S2

Catalase expression of FoxO6-dependent genes after FoxO6 knockdown. Western blot analysis was used to assess catalase protein levels in FoxO6-siRNA treated HEK293T cells. Results of one-factor ANOVA: ##p < 0.01, ###p < 0.001 vs. H2O2 nontreated cells. (PPT 352 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Park, M.H., Chung, K.W. et al. The essential role of FoxO6 phosphorylation in aging and calorie restriction. AGE 36, 9679 (2014). https://doi.org/10.1007/s11357-014-9679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-014-9679-3

Keywords

Navigation