Skip to main content

Advertisement

Log in

CPAP therapy induces favorable short-term changes in epicardial fat thickness and vascular and metabolic markers in apparently healthy subjects with obstructive sleep apnea-hypopnea syndrome (OSAHS)

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is an independent risk factor for hypertension, coronary artery disease, and diabetes mellitus. Epicardial fat has been recently recognized as a new risk factor and active participant on cardiometabolic risk. The aim of this study was to assess an independent relationship between sleep apnea severity, metabolic and vascular markers, and epicardial fat, at baseline and after 3 months of continuous positive airway pressure (CPAP) therapy.

Materials and method

Our study group consisted of 48 patients with suspected OSAHS and no prior history of cardiovascular disease or diabetes mellitus. All patients underwent full overnight polysomnography. Thickness of epicardial and visceral adipose tissue, brachial artery flow-mediated dilation (FMD), carotid intima media thickness (cIMT), pulse wave velocity (PWV), plasma C-reactive protein (CRP) levels, fasting glucose levels, HbA1c, homeostatic model assessment of insulin resistance index (HOMA), and lipid profile were measured at baseline and after 3 months of CPAP use in patients with moderate to severe OSAHS.

Results

In OSAHS patients (Apnea-hypopnea index (AHI) ≥15/h, N = 28), epicardial fat correlated with fasting glucose (rho = 0.406, p = 0.04) and HOMA (rho = 0.525, p = 0.049) but was not associated with visceral fat (rho = 0.126, p = 0.595). Epicardial adipose tissue (EAT) (p = 0.022) increased across AHI severity along with PWV (p = 0.045) and carotid intima media thickness (IMT) (p = 0.034) while FMD (p = 0.017) decreased. Therapy with CPAP reduced both epicardial (p < 0.001) and visceral fat (p = 0.001). Alterations in epicardial fat across the follow-up were associated with changes in PWV (p = 0.026) and HOMA (p = 0.037) independently of major confounders.

Conclusions

Epicardial fat thickness was associated with OSA severity and may be an additional marker of cardiovascular risk as well as of future diabetes in these patients. CPAP therapy reduced epicardial fat, suggesting its potentially beneficial role in reducing cardiometabolic risk in OSA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J (2000) Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 284(23):3015–3021

    Article  CAS  PubMed  Google Scholar 

  2. Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G (2013) Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol 62(7):569–576. doi:10.1016/j.jacc.2013.05.045

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67(5):968–977

    Article  CAS  PubMed  Google Scholar 

  4. Lapidus L, Bengtsson C, Larsson B, Pennert K, Rybo E, Sjostrom L (1984) Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow up of participants in the population study of women in Gothenburg, Sweden. Br Med J 289(6454):1257–1261

    Article  CAS  Google Scholar 

  5. Grunstein R, Wilcox I, Yang TS, Gould Y, Hedner J (1993) Snoring and sleep apnoea in men: association with central obesity and hypertension. Int J Obes Relat Metab Disord J Int Assoc Study Obes 17(9):533–540

    CAS  Google Scholar 

  6. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D’Agostino RB Sr, O’Donnell CJ (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116(1):39–48. doi:10.1161/CIRCULATIONAHA.106.675355

    Article  PubMed  Google Scholar 

  7. Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, Keaney JF Jr, Meigs JB, Lipinska I, Kathiresan S, Murabito JM, O’Donnell CJ, Benjamin EJ, Fox CS (2007) Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation 116(11):1234–1241. doi:10.1161/CIRCULATIONAHA.107.710509

    Article  CAS  PubMed  Google Scholar 

  8. Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2(10):536–543. doi:10.1038/ncpcardio0319

    Article  PubMed  Google Scholar 

  9. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108(20):2460–2466. doi:10.1161/01.CIR.0000099542.57313.C5

    Article  PubMed  Google Scholar 

  10. Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, Leonetti F (2003) Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 11(2):304–310. doi:10.1038/oby.2003.45

    Article  PubMed  Google Scholar 

  11. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25(10):2054–2061. doi:10.1161/01.ATV.0000178991.71605.18

    Article  CAS  PubMed  Google Scholar 

  12. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, Di Mario U, Leonetti F (2003) Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 88(11):5163–5168. doi:10.1210/jc.2003-030698

    Article  CAS  PubMed  Google Scholar 

  13. Jeong JW, Jeong MH, Yun KH, Oh SK, Park EM, Kim YK, Rhee SJ, Lee EM, Lee J, Yoo NJ, Kim NH, Park JC (2007) Echocardiographic epicardial fat thickness and coronary artery disease. Circ J Off J Jpn Circ Soc 71(4):536–539

    Google Scholar 

  14. Iacobellis G, Ribaudo MC, Zappaterreno A, Vecci E, Tiberti C, Di Mario U, Leonetti F (2003) Relationship of insulin sensitivity and left ventricular mass in uncomplicated obesity. Obes Res 11(4):518–524. doi:10.1038/oby.2003.73

    Article  PubMed  Google Scholar 

  15. Kocaman SA, Durakoglugil ME, Cetin M, Erdogan T, Ergul E, Canga A (2013) The independent relationship of epicardial adipose tissue with carotid intima-media thickness and endothelial functions: the association of pulse wave velocity with the active facilitated arterial conduction concept. Blood Press Monit 18(2):85–93. doi:10.1097/MBP.0b013e32835ebbb5

    Article  PubMed  Google Scholar 

  16. Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F (2004) Relation between epicardial adipose tissue and left ventricular mass. Am J Cardiol 94(8):1084–1087. doi:10.1016/j.amjcard.2004.06.075

    Article  PubMed  Google Scholar 

  17. Iacobellis G, Leonetti F (2005) Epicardial adipose tissue and insulin resistance in obese subjects. J Clin Endocrinol Metab 90(11):6300–6302. doi:10.1210/jc.2005-1087

    Article  CAS  PubMed  Google Scholar 

  18. Mariani S, Fiore D, Barbaro G, Basciani S, Saponara M, D’Arcangelo E, Ulisse S, Moretti C, Fabbri A, Gnessi L (2013) Association of epicardial fat thickness with the severity of obstructive sleep apnea in obese patients. Int J Cardiol 167(5):2244–2249. doi:10.1016/j.ijcard.2012.06.011

    Article  PubMed  Google Scholar 

  19. Lubrano C, Saponara M, Barbaro G, Specchia P, Addessi E, Costantini D, Tenuta M, Di Lorenzo G, Genovesi G, Donini LM, Lenzi A, Gnessi L (2012) Relationships between body fat distribution, epicardial fat and obstructive sleep apnea in obese patients with and without metabolic syndrome. PLoS One 7(10):e47059. doi:10.1371/journal.pone.0047059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akilli H, Kayrak M, Bekci TT, Erdogan HI, Aribas A, Yildirim O, Taner A, Erer M, Unlu A (2014) Gender-related changes of the epicardial fat thickness and leptin in obstructive sleep apnea. Echocardiography 31(4):411–419. doi:10.1111/echo.12392

    Article  PubMed  Google Scholar 

  21. Jenkinson C, Davies RJ, Mullins R, Stradling JR (1999) Comparison of therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised prospective parallel trial. Lancet 353(9170):2100–2105. doi:10.1016/S0140-6736(98)10532-9

    Article  CAS  PubMed  Google Scholar 

  22. Patel SR, White DP, Malhotra A, Stanchina ML, Ayas NT (2003) Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea: results of a meta-analysis. Arch Intern Med 163(5):565–571

    Article  PubMed  Google Scholar 

  23. D’Ambrosio C, Bowman T, Mohsenin V (1999) Quality of life in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressure—a prospective study. Chest 115(1):123–129

    Article  PubMed  Google Scholar 

  24. Peker Y, Hedner J, Norum J, Kraiczi H, Carlson J (2002) Increased incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: a 7-year follow-up. Am J Respir Crit Care Med 166(2):159–165. doi:10.1164/rccm.2105124

    Article  PubMed  Google Scholar 

  25. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM, American Academy of Sleep M (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 8(5):597–619. doi:10.5664/jcsm.2172

    Google Scholar 

  26. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, Lloyd JK, Deanfield JE (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340(8828):1111–1115

    Article  CAS  PubMed  Google Scholar 

  27. Khoury Z, Schwartz R, Gottlieb S, Chenzbraun A, Stern S, Keren A (1997) Relation of coronary artery disease to atherosclerotic disease in the aorta, carotid, and femoral arteries evaluated by ultrasound. Am J Cardiol 80(11):1429–1433

    Article  CAS  PubMed  Google Scholar 

  28. Nichols WW, Estrada JC, Braith RW, Owens K, Conti CR (2006) Enhanced external counterpulsation treatment improves arterial wall properties and wave reflection characteristics in patients with refractory angina. J Am Coll Cardiol 48(6):1208–1214. doi:10.1016/j.jacc.2006.04.094

    Article  PubMed  Google Scholar 

  29. Sjostrom L, Kvist H, Cederblad A, Tylen U (1986) Determination of total adipose tissue and body fat in women by computed tomography, 40K, and tritium. Am J Physiol 250(6 Pt 1):E736–E745

    CAS  PubMed  Google Scholar 

  30. Trakada G, Chrousos G, Pejovic S, Vgontzas A (2007) Sleep apnea and its association with the stress system, inflammation, insulin resistance and visceral obesity. Sleep Med Clin 2(2):251–261. doi:10.1016/j.jsmc.2007.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fitzgibbons TP, Czech MP (2014) Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 3(2):e000582. doi:10.1161/JAHA.113.000582

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim HM, Kim KJ, Lee HJ, Yu HT, Moon JH, Kang ES, Cha BS, Lee HC, Lee BW, Kim YJ (2012) Epicardial adipose tissue thickness is an indicator for coronary artery stenosis in asymptomatic type 2 diabetic patients: its assessment by cardiac magnetic resonance. Cardiovasc Diabetol 11:83. doi:10.1186/1475-2840-11-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kerr JD, Holden RM, Morton AR, Nolan RL, Hopman WM, Pruss CM, Garland JS (2013) Associations of epicardial fat with coronary calcification, insulin resistance, inflammation, and fibroblast growth factor-23 in stage 3–5 chronic kidney disease. BMC Nephrol 14:26. doi:10.1186/1471-2369-14-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seidell JC, Han TS, Feskens EJ, Lean ME (1997) Narrow hips and broad waist circumferences independently contribute to increased risk of non-insulin-dependent diabetes mellitus. J Intern Med 242(5):401–406

    Article  CAS  PubMed  Google Scholar 

  35. Wang CP, Hsu HL, Hung WC, Yu TH, Chen YH, Chiu CA, Lu LF, Chung FM, Shin SJ, Lee YJ (2009) Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin Endocrinol 70(6):876–882. doi:10.1111/j.1365-2265.2008.03411.x

    Article  Google Scholar 

  36. Kallianos A, Trakada G, Papaioannou T, Nikolopouloss I, Mitrakou A, Manios E, Kostopoulos K, Kostopoulos C, Zakopoulos N (2013) Glucose and arterial blood pressure variability in obstructive sleep apnea syndrome. Eur Rev Med Pharmacol Sci 17(14):1932–1937

    CAS  PubMed  Google Scholar 

  37. Karastergiou K, Evans I, Ogston N, Miheisi N, Nair D, Kaski JC, Jahangiri M, Mohamed-Ali V (2010) Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells. Arterioscler Thromb Vasc Biol 30(7):1340–1346. doi:10.1161/ATVBAHA.110.204719

    Article  CAS  PubMed  Google Scholar 

  38. Bertaso AG, Bertol D, Duncan BB, Foppa M (2013) Epicardial fat: definition, measurements and systematic review of main outcomes. Arq Bras Cardiol 101(1):e18–e28. doi:10.5935/abc.20130138

    PubMed  PubMed Central  Google Scholar 

  39. Hedner J, Darpo B, Ejnell H, Carlson J, Caidahl K (1995) Reduction in sympathetic activity after long-term CPAP treatment in sleep apnoea: cardiovascular implications. Eur Respir J 8(2):222–229

    Article  CAS  PubMed  Google Scholar 

  40. Vgontzas AN, Papanicolaou DA, Bixler EO, Hopper K, Lotsikas A, Lin HM, Kales A, Chrousos GP (2000) Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 85(3):1151–1158. doi:10.1210/jcem.85.3.6484

    Article  CAS  PubMed  Google Scholar 

  41. Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, Hirano T, Adachi M (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107(8):1129–1134

    Article  CAS  PubMed  Google Scholar 

  42. Vlachopoulos C, Dima I, Aznaouridis K, Vasiliadou C, Ioakeimidis N, Aggeli C, Toutouza M, Stefanadis C (2005) Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation 112(14):2193–2200. doi:10.1161/CIRCULATIONAHA.105.535435

    Article  PubMed  Google Scholar 

  43. Shamsuzzaman AS, Winnicki M, Lanfranchi P, Wolk R, Kara T, Accurso V, Somers VK (2002) Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105(21):2462–2464

    Article  CAS  PubMed  Google Scholar 

  44. Tanriverdi H, Evrengul H, Kara CO, Kuru O, Tanriverdi S, Ozkurt S, Kaftan A, Kilic M (2006) Aortic stiffness, flow-mediated dilatation and carotid intima-media thickness in obstructive sleep apnea: non-invasive indicators of atherosclerosis. Respir Int Rev Thorac Dis 73(6):741–750. doi:10.1159/000093531

    Google Scholar 

  45. Saito T, Saito T, Sugiyama S, Asai K, Yasutake M, Mizuno K (2010) Effects of long-term treatment for obstructive sleep apnea on pulse wave velocity. Hypertens Res Off J Jpn Soc Hypertens 33(8):844–849. doi:10.1038/hr.2010.77

    Article  Google Scholar 

  46. Steiropoulos P, Tsara V, Nena E, Fitili C, Kataropoulou M, Froudarakis M, Christaki P, Bouros D (2007) Effect of continuous positive airway pressure treatment on serum cardiovascular risk factors in patients with obstructive sleep apnea-hypopnea syndrome. Chest 132(3):843–851. doi:10.1378/chest.07-0074

    Article  CAS  PubMed  Google Scholar 

  47. Graner M, Seppala-Lindroos A, Rissanen A, Hakkarainen A, Lundbom N, Kaprio J, Nieminen MS, Pietilainen KH (2012) Epicardial fat, cardiac dimensions, and low-grade inflammation in young adult monozygotic twins discordant for obesity. Am J Cardiol 109(9):1295–1302. doi:10.1016/j.amjcard.2011.12.023

    Article  PubMed  Google Scholar 

  48. Saura D, Oliva MJ, Rodriguez D, Pascual-Figal DA, Hurtado JA, Pinar E, de la Morena G, Valdes M (2010) Reproducibility of echocardiographic measurements of epicardial fat thickness. Int J Cardiol 141(3):311–313. doi:10.1016/j.ijcard.2008.11.127

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent licensing arrangements) or nonfinancial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Zarogoulidis.

Additional information

Comment

This study underlines the fact that obstructive sleep apnea is more than a mechanical problem: it should be classified as a systemic disease.

Bernd Sanner

Wuppertal, Germany

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostopoulos, K., Alhanatis, E., Pampoukas, K. et al. CPAP therapy induces favorable short-term changes in epicardial fat thickness and vascular and metabolic markers in apparently healthy subjects with obstructive sleep apnea-hypopnea syndrome (OSAHS). Sleep Breath 20, 483–493 (2016). https://doi.org/10.1007/s11325-015-1236-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-015-1236-5

Keywords

Navigation