Skip to main content
Log in

Role of FDG-PET in the Clinical Management of Paraneoplastic Neurological Syndrome: Detection of the Underlying Malignancy and the Brain PET-MRI Correlates

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

The role of 2-deoxy-2-[F-18]fluoro-d-glucose-positron emission tomography (FDG-PET) imaging in the clinical management of paraneoplastic neurological syndrome (PNS) is in evolution. The initial results are promising, and the potential of this modality in this setting has been demonstrated in the literature. In the setting of PNS, FDG-PET imaging can be of value from the following standpoints: (1) detection of the occult malignant focus and (2) objective assessment of the presence and extent of the functional abnormality in the brain and correlation of the imaging findings with the clinical features and disease activity. For this communication, we have not considered case reports described in the literature, while tabulating the results of the published studies. However, we have referred to important observations made in such reports. In part, this effort has been made because of the relative paucity of the existing literature on this issue. The studies investigating the role of FDG-PET imaging in detecting the sites of malignancy can be divided into two broad categories: (A) studies that incorporated FDG-PET at the initial work up of PNS along with other modalities and (B) studies where FDG-PET was applied after conventional modalities had failed to detect the offending malignancy. While majority of the studies have been of the second category, both categories have demonstrated the incremental role of FDG-PET in the detection of the primary cancer in this setting. Also, it is evident that serial studies at certain intervals should be carried out if the initial FDG-PET scan is negative. The literature describing the central nervous system findings with PET in PNS are primarily restricted to paraneoplastic limbic encephalitis (PLE) and paraneoplastic cerebellar degeneration (PCD). FDG-PET usually shows hypermetabolism in one or both temporal lobes in the setting of paraneoplastic limbic encephalitis, and the magnetic resonance imaging (MRI) findings correlate with the FDG-PET scan results in only a fraction of cases. The functional–anatomic discordance between PET and MRI in PLE needs to be examined further, which might open up new insights into the disease process and might generate further subgroups within this entity. Both modalities complement each other in PLE, and frequently, abnormalities noted on FDG-PET images can provide additional clinical information which is of great value in further patient management. In the setting of paraneoplastic cerebellar degeneration, FDG-PET generally reveals cerebellar hypometabolism similar to the cerebellar atrophy demonstrated by MRI, and FDG-PET tends to show the abnormality more often than MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Graus F, Delattre JY, Antoine JC et al (2004) Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 75:1135–1140

    Article  PubMed  CAS  Google Scholar 

  2. Voltz R (2002) Paraneoplastic neurological syndromes: an update on diagnosis, pathogenesis and therapy. Lancet Neurol 1:294–305

    Article  PubMed  Google Scholar 

  3. Linke R, Schroeder M, Helmberger T, Voltz R (2004) Antibody-positive paraneoplastic neurologic syndromes: value of CT and PET for tumor diagnosis. Neurology 63(2):282–286, Jul 27

    PubMed  Google Scholar 

  4. Antoine JC, Cinotti L, Tilikete C, Bouhour F, Camdessanche JP, Confavreux C, Vighetto A, Renault-Mannel V, Michel D, Honnorat J (2000) [18F]fluorodeoxyglucose positron emission tomography in the diagnosis of cancer in patients with paraneoplastic neurological syndrome and anti-Hu antibodies. Ann Neurol 48(1):105–108, Jul

    Article  PubMed  CAS  Google Scholar 

  5. Rees JH, Hain SF, Johnson MR, Hughes RA, Costa DC, Ell PJ, Keir G, Rudge P (2001) The role of [18F]fluoro-2-deoxyglucose-PET scanning in the diagnosis of paraneoplastic neurological disorders. Brain 124(Pt 11):2223–2231, Nov

    Article  PubMed  CAS  Google Scholar 

  6. Younes-Mhenni S, Janier MF, Cinotti L, Antoine JC, Tronc F, Cottin V, Ternamian PJ, Trouillas P, Honnorat J (2004) FDG-PET improves tumour detection in patients with paraneoplastic neurological syndromes. Brain 127:2331–2338, Oct

    Article  PubMed  CAS  Google Scholar 

  7. Ances BM, Vitaliani R, Taylor RA, Liebeskind DS, Voloschin A, Houghton DJ, Galetta SL, Dichter M, Alavi A, Rosenfeld MR, Dalmau J (2005) Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain 128(Pt 8):1764–1777, Aug

    Article  PubMed  Google Scholar 

  8. Mathew RM, Cohen AB, Galetta SL, Alavi A, Dalmau J (2006) Paraneoplastic cerebellar degeneration: Yo-expressing tumor revealed after a 5-year follow-up with FDG-PET. J Neurol Sci 250(1–2):153–155, Dec 1

    Article  PubMed  Google Scholar 

  9. Frings M, Antoch G, Knorn P, Freudenberg L, Bier U, Timmann D, Maschke M (2005) Strategies in detection of the primary tumour in anti-Yo associated paraneoplastic cerebellar degeneration. J Neurol 252(2):197–201, Feb

    Article  PubMed  Google Scholar 

  10. Scheid R, Lincke T, Voltz R, von Cramon DY, Sabri O (2004) Serial 18F-fluoro-2-deoxy-d-glucose positron emission tomography and magnetic resonance imaging of paraneoplastic limbic encephalitis. Arch Neurol 61(11):1785–1789 Review, Nov

    Article  PubMed  Google Scholar 

  11. Franck G, Sadzot B, Salmon E et al (1987) Paraneoplastic limbic encephalopathy, inappropriate secretion of ADH, and recurrent infraclinical epileptic seizures: clinical anatomo-pathological and metabolic correlations by positron emission tomography. Rev Neurol (Paris) 143:657–669

    CAS  Google Scholar 

  12. Fakhoury T, Abou-Khalil B, Kessler RM (1999) Limbic encephalitis and hyperactive foci on PET scan. Seizure 8:427–430

    Article  PubMed  CAS  Google Scholar 

  13. Provenzale JM, Barboriak DP, Coleman RE (1998) Limbic encephalitis: comparison of FDG PET and MR imaging findings. AJR Am J Roentgenol 170:1659–1660

    PubMed  CAS  Google Scholar 

  14. Na DL, Hahm DS, Park JM, Kim SE (2001) Hypermetabolism of the medial temporal lobe in limbic encephalitis on 18FDG-PET scan: a case report. Eur Neurol. 45:187–189

    Article  PubMed  CAS  Google Scholar 

  15. Kassubek J, Juengling FD, Nitzsche EU, Lücking CH (2001) Limbic encephalitis investigated by 18FDG-PET and 3D MRI. J Neuroimaging 11:55–59

    Article  PubMed  CAS  Google Scholar 

  16. Lantos PL, Louis DN, Rosenblum MK et al (2002) Paraneoplastic syndromes. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology. 7th edn. Arnold, London, pp 975–980

    Google Scholar 

  17. Rubello D, Vitaliani R, Rigoni MT, Rampin L, Giometto B, Casara D, Zonzin GC, Zavagno G, Capirci C, Shapiro B, Muzzio PC (2005) A rare case of paraneoplastic cerebellar degeneration discovered by whole-body F-18 FDG PET. Clin Nucl Med 30(10):704–706, Oct

    Article  PubMed  CAS  Google Scholar 

  18. Choi KD, Kim JS, Park SH, Kim YK, Kim SE, Smitt PS (2006) Cerebellar hypermetabolism in paraneoplastic cerebellar degeneration. J Neurol Neurosurg Psychiatry 77(4):525–528, Apr

    Article  PubMed  Google Scholar 

  19. Scheid R, Voltz R, Briest S, Kluge R, von Cramon DY (2006) Clinical insights into paraneoplastic cerebellar degeneration. J Neurol Neurosurg Psychiatry 77(4):529–530, Apr

    Article  PubMed  CAS  Google Scholar 

  20. Leyhe T, Schule R, Schwarzler F, Gasser T, Haarmeier T (2006) Second primary tumor in anti-Ma1/2-positive paraneoplastic limbic encephalitis. J Neurooncol 78(1):49–51, May

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the International Union against Cancer (UICC), Geneva, Switzerland, under the ACSBI fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Alavi, A. Role of FDG-PET in the Clinical Management of Paraneoplastic Neurological Syndrome: Detection of the Underlying Malignancy and the Brain PET-MRI Correlates. Mol Imaging Biol 10, 131–137 (2008). https://doi.org/10.1007/s11307-008-0134-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0134-7

Key words

Navigation