Skip to main content

Advertisement

Log in

Imaging of the Surface of Human and Bovine Articular Cartilage with ESEM and AFM

  • Published:
Tribology Letters Aims and scope Submit manuscript

The surface of human and bovine articular cartilage was imaged with environmental SEM and AFM. The effective modulus of the surface, from force--distance curves obtained with AFM, remained constant at 9±2 kPa in the presence of synovial fluid. Extensive washing of the cartilage surface with phosphate buffered saline (PBS) removed a superficial gel-like layer, leaving a granular layer intact. Force--distance curves showed that the chemical and mechanical properties of the gel exposed to PBS changed over time. The effective modulus at the surface dropped from 481 to 4 kPa over an hour. The results suggest that the gel-like layer, having partly lost water through evaporation on removal from the joint, absorbs water from PBS. It becomes softer and eventually begins to dissolve. The low effective modulus of the gel-like layer in synovial fluid indicates that it is too soft to influence the surface roughness. Imprints of the surface under pressure were taken using a low viscosity dental kit. Imaging of the imprint surface indicated that the topography of the cartilage under pressure was similar to that of the surface after removal of the gel-like layer. In conclusion, imaging of articular cartilage with ESEM and AFM revealed two distinct non-fibrous layers, which are granular and gel-like, and cover the fibrous collagen matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.H. Dumbleton (1981) Tribology of Natural and Artificial Joints Elsevier New York

    Google Scholar 

  2. D. Dowson Z.-M. Jin (1986) Eng. Med. (UK) 15 IssueID2 63

    Google Scholar 

  3. K. Ikeuchi M. Oka H. Mori (1989) Trans. Jpn. Soc. Mech. Eng. 55 508

    Google Scholar 

  4. T. Murakami, JSME International Journal Series III-Vibration Control Engineering Engineering for Industry 33 (1990) 465.

  5. B.A. Hills, Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine 214 (2000) 83.

  6. D.A. Swann F.H. Silver H.S. Slayter W. Stafford E. Shore (1985) Biochem. J. 225 195 Occurrence Handle3977823

    PubMed  Google Scholar 

  7. A.D. Roberts (1971) Nature 231 434 Occurrence Handle10.1038/231434a0 Occurrence Handle4931596

    Article  PubMed  Google Scholar 

  8. A. Maroudas, Proc. Instn. Mech. Engrs. 181 (1966) 45.

  9. P. Kumar M. Oka J. Toguchida M. Kobayashi E. Uchida T. Nakamura K. Tanaka (2001) J. Anat. 199 241 Occurrence Handle10.1046/j.1469-7580.2001.19930241.x Occurrence Handle11554503

    Article  PubMed  Google Scholar 

  10. Y. Sawae T. Murakami K. Matsumoto M. Horimoto (2000) J. Jpn. Soc. Tribol. 45 150

    Google Scholar 

  11. C.R. Orford D.L. Gardner (1985) Histochem. J. 17 223 Occurrence Handle10.1007/BF01003221 Occurrence Handle4019250

    Article  PubMed  Google Scholar 

  12. N. Kampf J.F. Gohy R. Jerome J. Klein (2005) J. Polym. Sci. B-Polymer Physics 43 193 Occurrence Handle10.1002/polb.20321

    Article  Google Scholar 

  13. G.D. Jay (1992) Connect. Tissue Res. 28 71 Occurrence Handle1628491

    PubMed  Google Scholar 

  14. J.S. Jurvelin D.J. Muller M. Wong D. Studer A. Engel E.B. Hunziker (1996) J. Struct. Biol. 117 45 Occurrence Handle10.1006/jsbi.1996.0068 Occurrence Handle8776887

    Article  PubMed  Google Scholar 

  15. M.W. Rutland J.W.G. Tyrrell P. Attard (2004) J. Adhes. Sci. Technol. 18 1199 Occurrence Handle10.1163/1568561041581324

    Article  Google Scholar 

  16. R.Y. Hori L.F. Mockros (1976) J. Biomech. 9 259 Occurrence Handle10.1016/0021-9290(76)90012-9 Occurrence Handle1262361

    Article  PubMed  Google Scholar 

  17. W.C. Hayes L.F. Mockros (1971) J. Appl. Physiol. 31 562 Occurrence Handle5111002

    PubMed  Google Scholar 

  18. C.W. Archer (1999) Biology of Synovial Joints Harwood Academic Publishers Amsterdam

    Google Scholar 

  19. M. Stolz R. Raiteri A.U. Daniels M.R. VanLandingham W. Baschong U. Aebi (2004) Biophys. J. 86 3269 Occurrence Handle15111440

    PubMed  Google Scholar 

  20. R.V. Patel J.J. Mao (2003) Front. Biosc. 8 A18

    Google Scholar 

  21. S. Park K.D. Costa G.A. Ateshian (2004) J. Biomech. 37 1679 Occurrence Handle10.1016/j.jbiomech.2004.02.017 Occurrence Handle15388310

    Article  PubMed  Google Scholar 

  22. S.S. Skandalis A.D. Theocharis D.H. Vynios D.A. Theocharis N. Papageorgakopoulou (2004) Biochimie 86 221 Occurrence Handle10.1016/j.biochi.2004.01.005 Occurrence Handle15134837

    Article  PubMed  Google Scholar 

  23. K.J. McKinlay, C.A. Scotchford, D.M. Grant, J.M. Oliver, J.R. King, P.D. Brown, in: Electron Microscopy and Analysis 2003, 2004, p. 87.

  24. N.P. Cohen R.J. Foster V.C. Mow (1998) J. Orthop. Sports Phys. Ther. 28 203 Occurrence Handle9785256

    PubMed  Google Scholar 

  25. W.M. Lai J.S. Hou V.C. Mow (1991) J. Biomech. Eng.-Trans. ASME 113 245

    Google Scholar 

  26. V.C. Mow S.C. Kuei W.M. Lai C.G. Armstrong (1980) J. Biomech. Eng.-Trans. ASME 102 73

    Google Scholar 

  27. G.V. Dedkov (2000) Physica Status Solidi a-Appl. Res. 179 3 Occurrence Handle10.1002/1521-396X(200005)179:1<3::AID-PSSA3>3.0.CO;2-M

    Article  Google Scholar 

  28. AFM profiles were obtained with WSxM 4.0 Develop 7.5 downloaded from www.nanotec.es/download.htm.

  29. J.W. Kurutz S.H. Xu (2001) Langmuir 17 7323 Occurrence Handle10.1021/la010645s

    Article  Google Scholar 

  30. M. Kobayashi M. Oka (2003) Biomed. Mater. Eng. 13 429 Occurrence Handle14646057

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Crockett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crockett, R., Roos, S., Rossbach, P. et al. Imaging of the Surface of Human and Bovine Articular Cartilage with ESEM and AFM. Tribol Lett 19, 311–317 (2005). https://doi.org/10.1007/s11249-005-7448-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-005-7448-2

Keywords

Navigation