Skip to main content

Advertisement

Log in

Overexpression of Jazf1 induces cardiac malformation through the upregulation of pro-apoptotic genes in mice

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The transcription factor Juxtaposed with another zinc finger gene 1 (JAZF1) is a zinc finger protein that binds to the nuclear orphan receptor TR4. Recent evidence indicates that TR4 receptor functions as both a positive and negative regulator of transcription, but the role of JAZF1 in transcriptional mechanisms has not been elucidated. Recently, the incidence rate of congenital heart malformations was reported to be significantly elevated in patients who had neurofibromatosis 1 (NF1) with chromosomal microdeletion syndrome. Furthermore, Joined to JAZF1 (SUZ12) is expressed at high levels in the hearts of adult patients with NF1 microdeletion syndrome. Therefore, we hypothesized that ectopic expression of JAZF1 may lead to cardiac malformations that deleteriously affect the survival of neonates and adults. We sought to elucidate the role of JAZF1 in cardiac development using a Jazf1-overexpressing (Jazf1-Tg) mouse model. In Jazf1-Tg mice, Jazf1 mRNA expression was significantly elevated in the heart. Jazf1-Tg mice also showed cardiac defects, such as high blood pressure, electrocardiogram abnormalities, apoptosis of cardiomyocytes, ventricular non-compaction, and mitochondrial defects. In addition, we found that the expression levels of pro-apoptotic genes were elevated in the hearts of Jazf1-Tg mice. These findings suggest that Jazf1 overexpression may induce heart failure symptoms through the upregulation of pro-apoptotic genes in cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelwahid E, Pelliniemi LJ, Niinikoski H, Simell O, Tuominen J, Rahkonen O, Jokinen E (1999) Apoptosis in the pattern formation of the ventricular wall during mouse heart organogenesis. Anat Rec 256:208–217. doi:10.1002/(SICI)1097-0185(19991001)256:2<208:AID-AR12>3.0.CO;2-R

    Article  PubMed  CAS  Google Scholar 

  • Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126:789–799. doi:10.1016/j.cell.2006.06.049

    Article  PubMed  CAS  Google Scholar 

  • Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223. doi:10.1161/CIRCULATIONAHA.106.679597

    Article  PubMed  Google Scholar 

  • Bruneau BG (2002) Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res 90:509–519. doi:10.1161/01.RES.0000013072.51957.B7

    Article  PubMed  Google Scholar 

  • Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938–1948. doi:10.2337/diabetes.51.6.1938

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ (2006) Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48:1688–1697. doi:10.1016/j.jacc.2006.07.022

    Article  PubMed  CAS  Google Scholar 

  • Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R (1990) Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82:507–513

    Article  PubMed  CAS  Google Scholar 

  • Clark KL, Yutzey KE, Benson DW (2006) Transcription factors and congenital heart defects. Annu Rev Physiol 68:97–121. doi:10.1146/annurev.physiol.68.040104.113828

    Article  PubMed  CAS  Google Scholar 

  • Cripps RM, Olson EN (2002) Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 246:14–28. doi:10.1006/dbio.2002.0666

    Article  PubMed  CAS  Google Scholar 

  • Dorschner MO, Sybert VP, Weaver M, Pletcher BA, Stephens K (2000) NF1 microdeletion breakpoints are clustered at flanking repetitive sequences. Hum Mol Genet 9:35–46

    Article  PubMed  CAS  Google Scholar 

  • Engelkamp D, van Heyningen V (1996) Transcription factors in disease. Curr Opin Genet Dev 6:334–342

    Article  PubMed  CAS  Google Scholar 

  • Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T, Yee SP (2002) Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 106:873–879. doi:10.1161/01.CIR.0000024114.82981.EA

    Article  PubMed  CAS  Google Scholar 

  • Fisher SA, Langille BL, Srivastava D (2000) Apoptosis during cardiovascular development. Circ Res 87:856–864

    PubMed  CAS  Google Scholar 

  • Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P (2000) Myocardial cell death in human diabetes. Circ Res 87:1123–1132

    PubMed  CAS  Google Scholar 

  • Gaussin V, Van de Putte T, Mishina Y, Hanks MC, Zwijsen A, Huylebroeck D, Behringer RR, Schneider MD (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci USA 99:2878–2883. doi:10.1073/pnas.042390499

    Article  PubMed  CAS  Google Scholar 

  • Gelb BD (2001) Genetic basis of syndromes associated with congenital heart disease. Curr Opin Cardiol 16:188–194

    Article  PubMed  CAS  Google Scholar 

  • Giordano FJ, Gerber HP, Williams SP, VanBruggen N, Bunting S, Ruiz-Lozano P, Gu Y, Nath AK, Huang Y, Hickey R, Dalton N, Peterson KL, Ross J Jr, Chien KR, Ferrara N (2001) A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A 98:5780–5785. doi:10.1073/pnas.091415198

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312. doi:10.1126/science.281.5381.1309

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Fujimoto W, Tamaai T, Kim KH, Matsuura H, Jetten AM (1994) TAK1: molecular cloning and characterization of a new member of the nuclear receptor superfamily. Mol Endocrinol 8:1667–1680

    Article  PubMed  CAS  Google Scholar 

  • Hogan B, Constantini F, Lacy E (1986) Manipulating the Mouse Embryo. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Latchman DS (1996) Transcription-factor mutations and disease. N Engl J Med 334:28–33

    Article  PubMed  CAS  Google Scholar 

  • Latif S, Masino A, Garry DJ (2006) Transcriptional pathways direct cardiac development and regeneration. Trends Cardiovasc Med 16:234–240. doi:10.1016/j.tcm.2006.04.004

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Chang C (1995) Identification of human TR2 orphan receptor response element in the transcriptional initiation site of the simian virus 40 major late promoter. J Biol Chem 270:5434–5440. doi:10.1074/jbc.270.10.5434

    Article  PubMed  CAS  Google Scholar 

  • Liang X, Sun Y, Schneider J, Ding JH, Cheng H, Ye M, Bhattacharya S, Rearden A, Evans S, Chen J (2007) Pinch1 is required for normal development of cranial and cardiac neural crest-derived structures. Circ Res 100:527–535. doi:10.1161/01.RES.0000259041.37059.8c

    Article  PubMed  CAS  Google Scholar 

  • Lin AE, Birch PH, Korf BR, Tenconi R, Niimura M, Poyhonen M, Armfield Uhas K, Sigorini M, Virdis R, Romano C, Bonioli E, Wolkenstein P, Pivnick EK, Lawrence M, Friedman JM (2000) Cardiovascular malformations and other cardiovascular abnormalities in neurofibromatosis 1. Am J Med Genet 95:108–117. doi:10.1002/1096-8628(20001113)95:2<108:AID-AJMG4>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  • Ling L, Yan Y, Gangyi Y, Chunming L, Mengliu Y, Hua L, Haihong Z (2010) The role of JAZF1 on lipid metabolism and related genes in vitro. Metabolism. doi:10.1016/j.metabol.2010.04.021

  • Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Mitochondrial pathology in cardiac failure. Cardiovasc Res 49:17–26. doi:10.1016/S0008-6363(01)00368-6

    Article  PubMed  CAS  Google Scholar 

  • Mazzone T, Chait A, Plutzky J (2008) Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet 371:1800–1809. doi:10.1016/S0140-6736(08)60768-0

    Article  PubMed  CAS  Google Scholar 

  • Mo FE, Lau LF (2006) The matricellular protein CCN1 is essential for cardiac development. Circ Res 99:961–969. doi:10.1161/01.RES.0000248426.35019.89

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Fujino S, Nakanishi G, Kim YS, Jetten AM (2004) TIP27: a novel repressor of the nuclear orphan receptor TAK1/TR4. Nucleic Acids Res 32:4194–4204. doi:10.1093/nar/gkh741

    Article  PubMed  CAS  Google Scholar 

  • Nemer M (2008) Genetic insights into normal and abnormal heart development. Cardiovasc Pathol 17:48–54. doi:10.1093/nar/gkh741

    Article  PubMed  CAS  Google Scholar 

  • Pexieder T (1975) Cell death in the morphogenesis and teratogenesis of the heart. Adv Anat Embryol Cell Biol 51:3–99

    PubMed  CAS  Google Scholar 

  • Riva P, Corrado L, Natacci F, Castorina P, Wu BL, Schneider GH, Clementi M, Tenconi R, Korf BR, Larizza L (2000) NF1 microdeletion syndrome: refined FISH characterization of sporadic and familial deletions with locus-specific probes. Am J Hum Genet 66:100–109. doi:10.1086/302709

    Article  PubMed  CAS  Google Scholar 

  • Russell LK, Finck BN, Kelly DP (2005) Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol 38:81–91. doi:10.1016/j.yjmcc.2004.10.010

    Article  PubMed  CAS  Google Scholar 

  • Shou W, Aghdasi B, Armstrong DL, Guo Q, Bao S, Charng MJ, Mathews LM, Schneider MD, Hamilton SL, Matzuk MM (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391:489–492. doi:10.1038/35146

    Article  PubMed  CAS  Google Scholar 

  • Song L, Fassler R, Mishina Y, Jiao K, Baldwin HS (2007) Essential functions of Alk3 during AV cushion morphogenesis in mouse embryonic hearts. Dev Biol 301:276–286. doi:10.1016/j.ydbio.2006.08.004

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407:221–226. doi:10.1038/35025190

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, Crenshaw A, Cancel-Tassin G, Staats BJ, Wang Z, Gonzalez-Bosquet J, Fang J, Deng X, Berndt SI, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cussenot O, Valeri A, Andriole GL, Crawford ED, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover R, Hayes RB, Hunter DJ, Chanock SJ (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40:310–315 doi:10.1038/ng.91

    Google Scholar 

  • Tonsgard JH, Yelavarthi KK, Cushner S, Short MP, Lindgren V (1997) Do NF1 gene deletions result in a characteristic phenotype? Am J Med Genet 73:80–86. doi:10.1002/(SICI)1096-8628(19971128)73:1<80:AID-AJMG16>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

  • van Schaick HS, Rosmalen JG, Lopes da Silva S, Chang C, Burbach JP (2000) Expression of the orphan receptor TR4 during brain development of the rat. Brain Res Mol Brain Res 77:104–110. doi:10.1016/S0169-328X(00)00046-2

    Article  PubMed  Google Scholar 

  • Venturin M, Guarnieri P, Natacci F, Stabile M, Tenconi R, Clementi M, Hernandez C, Thompson P, Upadhyaya M, Larizza L, Riva P (2004) Mental retardation and cardiovascular malformations in NF1 microdeleted patients point to candidate genes in 17q11.2. J Med Genet 41:35–41. doi:10.1136/jmg.2003.014761

    Article  PubMed  CAS  Google Scholar 

  • Venturin M, Bentivegna A, Moroni R, Larizza L, Riva P (2005) Evidence by expression analysis of candidate genes for congenital heart defects in the NF1 microdeletion interval. Ann Hum Genet 69:508–516. doi:10.1111/j.1529-8817.2005.00203.x

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Choudhry A, Berlan M, Singal A, Siwik E, Mohr S, Fisher SA (1998) Developmental remodeling and shortening of the cardiac outflow tract involves myocyte programmed cell death. Development 125:3809–3820

    PubMed  CAS  Google Scholar 

  • Weiford BC, Subbarao VD, Mulhern KM (2004) Noncompaction of the ventricular myocardium. Circulation 109:2965–2971. doi:10.1161/01.CIR.0000132478.60674.D0

    Article  PubMed  Google Scholar 

  • Wilding JR, Schneider JE, Sang AE, Davies KE, Neubauer S, Clarke K (2005) Dystrophin- and MLP-deficient mouse hearts: marked differences in morphology and function, but similar accumulation of cytoskeletal proteins. FASEB J 19:79–81. doi:10.1096/fj.04-1731fje

    PubMed  CAS  Google Scholar 

  • Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810. doi:10.1016/j.cell.2006.06.050

    Article  PubMed  CAS  Google Scholar 

  • Young WJ, Smith SM, Chang C (1997) Induction of the intronic enhancer of the human ciliary neurotrophic factor receptor (CNTFRalpha) gene by the TR4 orphan receptor. A member of steroid receptor superfamily. J Biol Chem 272:3109–3116. doi:10.1074/jbc.272.5.3109

    Article  PubMed  CAS  Google Scholar 

  • Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, Andersen G, Ardlie K, Boström KB, Bergman RN, Bonnycastle LL, Borch-Johnsen K, Burtt NP, Chen H, Chines PS, Daly MJ, Deodhar P, Ding CJ, Doney AS, Duren WL, Elliott KS, Erdos MR, Frayling TM, Freathy RM, Gianniny L, Grallert H, Grarup N, Groves CJ, Guiducci C, Hansen T, Herder C, Hitman GA, Hughes TE, Isomaa B, Jackson AU, Jørgensen T, Kong A, Kubalanza K, Kuruvilla FG, Kuusisto J, Langenberg C, Lango H, Lauritzen T, Li Y, Lindgren CM, Lyssenko V, Marvelle AF, Meisinger C, Midthjell K, Mohlke KL, Morken MA, Morris AD, Narisu N, Nilsson P, Owen KR, Palmer CN, Payne F, Perry JR, Pettersen E, Platou C, Prokopenko I, Qi L, Qin L, Rayner NW, Rees M, Roix JJ, Sandbaek A, Shields B, Sjögren M, Steinthorsdottir V, Stringham HM, Swift AJ, Thorleifsson G, Thorsteinsdottir U, Timpson NJ, Tuomi T, Tuomilehto J, Walker M, Watanabe RM, Weedon MN, Willer CJ; Wellcome Trust Case Control Consortium, Illig T, Hveem K, Hu FB, Laakso M, Stefansson K, Pedersen O, Wareham NJ, Barroso I, Hattersley AT, Collins FS, Groop L, McCarthy MI, Boehnke M, Altshuler D (2008) Metaanalysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40: 638–645. doi:10.1038/ng.120

    Google Scholar 

  • Zhao Z, Rivkees SA (2000) Programmed cell death in the developing heart: regulation by BMP4 and FGF2. Dev Dyn 217:388–400. doi:10.1002/(SICI)1097-0177(200004)217:4<388:AID-DVDY6>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the SRC program (Center for Food & Nutritional Genomics: grant number 2010-0001886) of the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology, a grant from the BioGreen 21 Program (no. PJ0071812009), Rural Development Administration, Republic of Korea, and the Grant of the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Anti-aging and Well-being Research Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zae Young Ryoo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, K.B., Kim, M.O., Yu, D.H. et al. Overexpression of Jazf1 induces cardiac malformation through the upregulation of pro-apoptotic genes in mice. Transgenic Res 20, 1019–1031 (2011). https://doi.org/10.1007/s11248-010-9476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9476-4

Keywords

Navigation