Skip to main content

Advertisement

Log in

Gut microbiota and Hashimoto’s thyroiditis

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

About two third of the human microbial commensal community, namely the gut microbiota, is hosted by the gastrointestinal tract which represents the largest interface of the organism to the external environment. This microbial community co-evolved in a symbiotic relationship with the human beings. Growing evidence support the notion that the microbiota plays a significant role in maintaining nutritional, metabolic and immunologic homeostasis in the host. Microbiota, beside the expected role in maintaining gastrointestinal homeostasis also exerts metabolic functions in nutrients digestion and absorption, detoxification and vitamins’ synthesis. Intestinal microbiota is also key in the correct development of the lymphoid system, 70% of which resides at the intestinal level. Available studies, both in murine models and humans, have shown an altered ratio between the different phyla, which characterize a” normal” gut microbiota, in a number of different disorders including obesity, to which a significant part of the studies on intestinal microbiota has been addressed so far. These variations in gut microbiota composition, known as dysbiosis, has been also described in patients bearing intestinal autoimmune diseases as well as type 1 diabetes mellitus, systemic sclerosis and systemic lupus erythematosus. Being Hashimoto’s thyroiditis the most frequent autoimmune disorder worldwide, the analysis of the reciprocal influence with intestinal microbiota gained interest. The whole thyroid peripheral homeostasis may be sensitive to microbiota changes but there is also evidence that the genesis and progression of autoimmune thyroid disorders may be significantly affected from a changing intestinal microbial composition or even from overt dysbiosis. In this brief review, we focused on the main features which characterize the reciprocal influence between microbiota and thyroid autoimmunity described in the most recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–36.

    Article  CAS  PubMed  Google Scholar 

  2. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14:20–32.

    Article  CAS  PubMed  Google Scholar 

  3. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352:539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. Host-bacterial symbiosis in health and disease. Adv Immunol. 2010;107:243–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Healthy Aging. 2016;4:3–16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–8.

    Article  CAS  PubMed  Google Scholar 

  10. van de Guchte M, Blottière HM, Doré J. Humans as holobionts: implications for prevention and therapy. Microbiome. 2018;6:81.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Natividad JM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res. 2013;69:42–51.

    Article  CAS  PubMed  Google Scholar 

  12. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279:70–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57:1–24.

    Article  CAS  PubMed  Google Scholar 

  14. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–8.

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki K, Kawamoto S, Maruya M, Fagarasan S. GALT: organization and dynamics leading to IgA synthesis. Adv Immunol. 2010;107:153–85.

    Article  CAS  PubMed  Google Scholar 

  16. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17:219–32. https://doi.org/10.1038/nri.2017.7.

    Article  CAS  PubMed  Google Scholar 

  17. Arora T, Bäckhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016;280:339–49.

    Article  CAS  PubMed  Google Scholar 

  18. Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13:514–22.

    Article  CAS  PubMed  Google Scholar 

  19. Rothenberg ME, Saito H, Peebles RS Jr. Advances in mechanisms of allergic disease in 2016. J Allergy Clin Immunol. 2017;140:1622–31.

    Article  CAS  PubMed  Google Scholar 

  20. Mcllroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold GL. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther. 2018;47:26–42.

    Article  Google Scholar 

  21. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6:e25792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uusitalo U, Liu X, Yang J, Aronsson CA, Hummel S, Butterworth M et al; TEDDY Study Group. Association of Early Exposure of Probiotics and Islet Autoimmunity in the TEDDY Study. JAMA Pediatr. 2016;170:20–8.

  23. Pianta A, Arvikar SL, Strle K, Drouin EE, Wang Q, Costello CE, et al. Two rheumatoid arthritis-specific autoantigens correlate microbial immunity with autoimmune responses in joints. J Clin Invest. 2017;127:2946–56.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Montassier E, Berthelot L, Soulillou JP. Are the decrease in circulating anti-α1,3-Gal IgG and the lower content of galactosyl transferase A1 in the microbiota of patients with multiple sclerosis a novel environmental risk factor for the disease? Mol Immunol. 2018;93:162–5.

    Article  CAS  PubMed  Google Scholar 

  25. Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio. 2014;5:e01548–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4:478–85.

    Article  CAS  PubMed  Google Scholar 

  27. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–18.

    Article  CAS  PubMed  Google Scholar 

  28. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science. 2015;349:993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB, Zhu Q, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity. 2008;29:637–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng T, Cong Y, Alexander K, Elson C. Regulation of Toll-like receptor 5 gene expression and function on mucosal dendritic cells. PloS One. 2012;7:e35918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010;328:1705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yurkovetskiy LA, Pickard JM, Chervonsky AV. Microbiota and autoimmunity: exploring new avenues. Cell Host Microbe. 2015;17:548–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosser EC, Oleinika K, Tonon S, Doyle R, Bosma A, Carter NA, et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat Med. 2014;20:1334–9.

    Article  CAS  PubMed  Google Scholar 

  35. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.

    Article  CAS  PubMed  Google Scholar 

  36. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3:4–14.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27:104–19.

    Article  CAS  PubMed  Google Scholar 

  38. Alenghat T, Artis D. Epigenomic regulation of host-microbiota interactions. Trends Immunol. 2014;35:518–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14:174–80.

    Article  CAS  PubMed  Google Scholar 

  40. Tomer Y. Mechanisms of autoimmune thyroid diseases: from genetics to epigenetics. Annu Rev Pathol. 2014;9:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Latrofa F, Fiore E, Rago T, Antonangeli L, Montanelli L, Ricci D, et al. Iodine contributes to thyroid autoimmunity in humans by unmasking a cryptic epitope on thyroglobulin. J Clin Endocrinol Metab. 2013;98:E1768–74.

    Article  CAS  PubMed  Google Scholar 

  42. Obołończyk Ł, Siekierska-Hellmann M, Wiśniewski P, Lewczuk A, Berendt-Obołończyk M, Lakomy A, et al. Epidemiology, risk factors and prognosis of Interferon alpha induced thyroid disorders. A prospective clinical study. Postepy Hig Med Dosw (Online). 2017;71:842–9.

    Article  Google Scholar 

  43. Dineen R, Bogdanet D, Thompson D, Thompson CJ, Behan LA, McKay AP, et al. Endocrinopathies and renal outcomes in lithium therapy: impact of lithium toxicity. QJM. 2017;110:821–7.

    Article  CAS  PubMed  Google Scholar 

  44. Winer A, Bodor JN, Borghaei H. Identifying and managing the adverse effects of immune checkpoint blockade. J Thorac Dis. 2018;10:S480–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang S, Wu Y, Zuo Z, Zhao Y, Wang K. The effect of vitamin D supplementation on thyroid autoantibody levels in the treatment of autoimmune thyroiditis: a systematic review and a meta-analysis. Endocrine. 2018;59:499–505.

    Article  CAS  PubMed  Google Scholar 

  46. Tomer Y. Hepatitis C and interferon induced thyroiditis. J Autoimmun. 2010;34:J322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol. 2008;8:737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feng M, Li H, Chen SF, Li WF, Zhang FB. Polymorphisms in the vitamin D receptor gene and risk of autoimmune thyroid diseases: a meta-analysis. Endocrine. 2013;43:318–26.

    Article  CAS  PubMed  Google Scholar 

  49. Fujii A, Inoue N, Watanabe M, Kawakami C, Hidaka Y, Hayashizaki Y, et al. TSHR gene polymorphisms in the enhancer regions are most strongly associated with the development of graves' disease, especially intractable disease, and of hashimoto's disease. Thyroid. 2017;27:111–9.

    Article  CAS  PubMed  Google Scholar 

  50. Mizuma T, Watanabe M, Inoue N, Arakawa Y, Tomari S, Hidaka Y, et al. Association of the polymorphisms in the gene encoding thyroglobulin with the development and prognosis of autoimmune thyroid disease. Autoimmunity. 2017;50:386–92.

    Article  CAS  PubMed  Google Scholar 

  51. Ting WH, Chien MN, Lo FS, Wang CH, Huang CY, Lin CL, et al. Association of cytotoxic t-lymphocyte-associated protein 4 (CTLA4) gene polymorphisms with autoimmune thyroid disease in children and adults: case-control study. PLoS One. 2016;1:e0154394.

    Article  CAS  Google Scholar 

  52. Dultz G, Matheis N, Dittmar M, Röhrig B, Bender K, Kahaly GJ. The protein tyrosine phosphatase non-receptor type 22 C1858T polymorphism is a joint susceptibility locus for immunthyroiditis and autoimmune diabetes. Thyroid. 2009;19:143–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lee HJ, Li CW, Hammerstad SS, Stefan M, Tomer Y. Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J Autoimmun. 2015;64:82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang B, Shao X, Song R, Xu D, Zhang JA. The emerging role of epigenetics in autoimmune thyroid diseases. Front Immunol. 2017;8:396.

    PubMed  PubMed Central  Google Scholar 

  55. Shi Y, Wang H, Su Z, Chen J, Xue Y, Wang S, et al. Differentiation imbalance of Th1/Th17 in peripheral blood mononuclear cells might contribute to pathogenesis of Hashimoto's thyroiditis. Scand J Immunol. 2010;72:250–5.

    Article  CAS  PubMed  Google Scholar 

  56. Santaguida MG, Nardo S, Del Duca SC, Lococo E, Virili C, Gargano L, et al. Increased interleukin-4-positive lymphocytes in patients with Hashimoto's thyroiditis and concurrent non-endocrine autoimmune disorders. Clin Exp Immunol. 2011;165:148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Santaguida MG, Gatto I, Mangino G, Virili C, Stramazzo I, Fallahi P, et al. BREG cells in Hashimoto's thyroiditis isolated or associated to further organ-specific autoimmune diseases. Clin Immunol. 2017;184:42–7.

    Article  CAS  PubMed  Google Scholar 

  58. Kristensen B. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls. Dan Med J. 2016;63 pii: B5177.

  59. Meng S, Badrinarain J, Sibley E, Fang R, Hodin R. Thyroid hormone and the d-type cyclins interact in regulating enterocyte gene transcription. J Gastrointest Surg. 2001;5:49–55.

    Article  CAS  PubMed  Google Scholar 

  60. Wegener M, Wedmann B, Langhoff T, Schaffstein J, Adamek R. Effect of hyperthyroidism on the transit of a caloric solid liquid meal through the stomach, the small intestine, and the colon in man. J Clin Endocrinol Metab. 1992;75:745–9.

    CAS  PubMed  Google Scholar 

  61. Devdhar M, Ousman YH, Burman KD. Hypothyroidism. Endocrinol Metab Clin North Am. 2007;36:595–615.

    Article  CAS  PubMed  Google Scholar 

  62. Daher R, Yazbeck T, Jaoude JB, Abboud B. Consequences of dysthyroidism on the digestive tract and viscera. World J Gastroenterol. 2009;15:2834–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tönjes A, Karger S, Koch CA, Paschke R, Tannapfel A, Stumvoll M, et al. Impaired enteral levothyroxine absorption in hypothyroidism refractory to oral therapy after thyroid ablation for papillary thyroid cancer: case report and kinetic studies. Thyroid. 2006;16:1047–51.

    Article  PubMed  Google Scholar 

  64. Lauritano EC, Bilotta AL, Gabrielli M, Scarpellini E, Lupascu A, Laginestra A, et al. Association between hypothyroidism and small intestinal bacterial overgrowth. J Clin Endocrinol Metab. 2007;92:4180–4.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou L, Li X, Ahmed A, Wu D, Liu L, Qiu J, et al. Gut microbe analysis between hyperthyroid and healthy individuals. Curr Microbiol. 2014;69:675–80.

    Article  CAS  PubMed  Google Scholar 

  66. Vought RL, Brown FA, Sibinovic KH, McDaniel EG. Effect of changing intestinal bacterial flora on thyroid function in the rat. Horm Metab Res. 1972;4:43–7.

    Article  CAS  PubMed  Google Scholar 

  67. Neuman H, Debelius JW, Knight R, Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev. 2015;39:509–21.

    Article  PubMed  Google Scholar 

  68. Virili C, Centanni M. Does microbiota composition affect thyroid homeostasis? Endocrine. 2015;49:583–7.

    Article  CAS  PubMed  Google Scholar 

  69. Virili C, Centanni M. "With a little help from my friends" - The role of microbiota in thyroid hormone metabolism and enterohepatic recycling. Mol Cell Endocrinol. 2017;458:39–43.

    Article  CAS  PubMed  Google Scholar 

  70. de Herder WW, Hazenberg MP, Pennock-Schroder AM, Visser TJ. Hydrolysis of iodothyronine conjugates by intestinal bacteria. FEMS Microbiol Lett. 1985;30:347e351.

    Article  Google Scholar 

  71. de Herder WW, Hazenberg MP, Pennock-Schroder AM, Hennemann G, Visser TJ. Hydrolysis of iodothyronine glucuronides by obligately anaerobic bacteria isolated from human faecal flora. FEMS Microbiol Lett. 1986;35:249e253.

    Article  Google Scholar 

  72. Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U, et al. Biosynthesis of 3-Iodothyronamine From T4 in Murine Intestinal Tissue. Endocrinology. 2015;156:4356–64.

    Article  CAS  PubMed  Google Scholar 

  73. Hoefig CS, Zucchi R, Köhrle J. Thyronamines and derivatives: physiological relevance, pharmacological actions, and future research directions. Thyroid. 2016;26:1656–73.

    Article  CAS  PubMed  Google Scholar 

  74. Tannock GW. A special fondness for lactobacilli. Appl Environ Microbiol. 2004;70:3189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sohail MU, Ijaz A, Yousaf MS, Ashraf K, Zaneb H, Aleem M, et al. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult Sci. 2010;89:1934–8.

    Article  CAS  PubMed  Google Scholar 

  76. Chotinsky D, Mihaylov R. Effect of probiotics and Avotan on the level of thyroid hormones in the blood plasma of broiler chickens. Bulg J Agric Sci. 2013;19:817–21.

    Google Scholar 

  77. Varian BJ, Poutahidis T, Levkovich T, Ibrahim YM, Lakritz JR, Chatzigiagkos A, et al. Beneficial bacteria stimulate youthful thyroid gland activity. J Obes Weight Loss Ther. 2014;4:220.

    Google Scholar 

  78. Garn H, Bahn S, Baune BT, Binder EB, Bisgaard H, Chatila TA, et al. Current concepts in chronic inflammatory diseases: interactions between microbes, cellular metabolism, and inflammation. J Allergy Clin Immunol. 2016;138:47–56.

    Article  CAS  PubMed  Google Scholar 

  79. Benvenga S, Guarneri F. Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord. 2016;17:485–98.

    Article  CAS  PubMed  Google Scholar 

  80. Arata N, Ando T, Unger P, Davies TF. By-stander activation in autoimmune thyroiditis: studies on experimental autoimmune thyroiditisin the GFP+ fluorescent mouse. Clin Immunol. 2006;121:108–17.

    Article  CAS  PubMed  Google Scholar 

  81. Thrasyvoulides A, Lymberi P. Evidence for intramolecular B-cell epitope spreading during experimental immunization with an immunogenic thyroglobulin peptide. Clin Exp Immunol. 2003;132:401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de Oliveira GLV, Leite AZ, Higuchi BS, Gonzaga MI, Mariano VS. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology. 2017;152:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sasso FC, Carbonara O, Torella R, Mezzogiorno A, Esposito V, Demagistris L, et al. Ultrastructural changes in enterocytes in subjects with Hashimoto's thyroiditis. Gut. 2004;53:1878–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. 2017;8:598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Penhale WJ, Young PR. The influence of the normal microbial flora on the susceptibility of rats to experimental autoimmune thyroiditis. Clin Exp Immunol. 1988;7:288–92.

    Google Scholar 

  86. Kiseleva EP, Mikhailopulo KI, Sviridov OV, Novik GI, Knirel YA, Szwajcer DE. The role of components of bifidobacterium and lactobacillus in pathogenesis and serologic diagnosis of autoimmune thyroid diseases. Benef Microbes. 2011;2:139–54.

    Article  CAS  PubMed  Google Scholar 

  87. Zhou JS, Gill HS. Immunostimulatory probiotic Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019 do not induce pathological inflammation in mouse model of experimental autoimmune thyroiditis. Int J Food Microbiol. 2005;103:97–104.

    Article  CAS  PubMed  Google Scholar 

  88. Ishaq HM, Mohammad IS, Guo H, Shahzad M, Hou YJ, Ma C, et al. Molecular estimation of alteration in intestinal microbial composition in Hashimoto's thyroiditis patients. Biomed Pharmacother. 2017;95:865–74.

    Article  CAS  PubMed  Google Scholar 

  89. Zhao F, Feng J, Li J, Zhao L, Liu Y, Chen H, et al. Alterations of the gut microbiota in Hashimoto's thyroiditis patients. Thyroid. 2018;28:175–86.

    Article  CAS  PubMed  Google Scholar 

  90. Cosorich I, Dalla-Costa G, Sorini C, Ferrarese R, Messina MJ, Dolpady J, et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv. 2017;3:e1700492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fallahi P, Ferrari SM, Ruffilli I, Elia G, Biricotti M, Vita R, et al. The association of other autoimmune diseases in patients with autoimmune thyroiditis: review of the literature and report of a large series of patients. Autoimmun Rev. 2016;15:1125–8.

    Article  CAS  PubMed  Google Scholar 

  92. Ferrari SM, Elia G, Virili C, Centanni M, Antonelli A, Fallahi P. Systemic lupus erythematosus and thyroid autoimmunity. Front Endocrinol (Lausanne). 2017;8:138.

    Article  Google Scholar 

  93. Ruffilli I, Ragusa F, Benvenga S, Vita R, Antonelli A, Fallahi P, et al. Psoriasis, psoriatic arthritis, and thyroid autoimmunity. Front Endocrinol (Lausanne). 2017;8:139.

    Article  Google Scholar 

  94. Virili C, Bassotti G, Santaguida MG, Iuorio R, Del Duca SC, Mercuri V, et al. Atypical celiac disease as cause of increased need for thyroxine: a systematic study. J Clin Endocrinol Metab. 2012;97:E419–22.

    Article  CAS  PubMed  Google Scholar 

  95. Cellini M, Santaguida MG, Virili C, Capriello S, Brusca N, Gargano L, et al. Hashimoto's thyroiditis and autoimmune gastritis. Front Endocrinol (Lausanne). 2017;8:92.

    Article  Google Scholar 

  96. Melcescu E, Hogan RB 2nd, Brown K, Boyd SA, Abell TL, Koch CA. The various faces of autoimmune endocrinopathies: non-tumoral hypergastrinemia in a patient with lymphocytic colitis and chronic autoimmune gastritis. Exp Mol Pathol. 2012;93:434–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, et al. Intestinal microbiota influences non-intestinal related autoimmune diseases. Front Microbiol. 2018;9:432.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla Virili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virili, C., Fallahi, P., Antonelli, A. et al. Gut microbiota and Hashimoto’s thyroiditis. Rev Endocr Metab Disord 19, 293–300 (2018). https://doi.org/10.1007/s11154-018-9467-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-018-9467-y

Keywords

Navigation