Skip to main content

Advertisement

Log in

The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH)

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The low grade inflammatory state present in obesity promotes the progression of Non-Alcoholic Fatty Liver Disease (NAFLD). In Non-Alcoholic Steatohepatitis (NASH), augmented hepatic steatosis is accompanied by aberrant intrahepatic inflammation and exacerbated hepatocellular injury. NASH is an important disorder and can lead to fibrosis, cirrhosis and even neoplasia. The pathology of NASH involves a complex network of mechanisms, including increased infiltration of different subsets of immune cells, such as monocytes, T-lymphocytes and neutrophils, to the liver, as well as activation and in situ expansion of liver resident cells such as Kupffer cells or stellate cells. In this review, we summarize recent advances regarding understanding the role of the various cells of the innate and adaptive immunity in NASH development and progression, and discuss possible future therapeutic options and tools to interfere with disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43(2 Suppl 1):S99–112.

    Article  CAS  PubMed  Google Scholar 

  2. Berlanga A, Guiu-Jurado E. Molecular pathways in non-alcoholic fatty liver disease. Clin Exp Gastroenterol. 2014;7(1):221–39.

    PubMed  PubMed Central  Google Scholar 

  3. Wong VW, Wong GL, Choi PC, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut. 2010;59(7):969–74.

    Article  PubMed  Google Scholar 

  4. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang T, Sui Y, Lian M, Li Z, Hua J. Pro-inflammatory activated kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death. PLoS ONE. 2013;8(12):e81949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10(4):355–61.

    Article  CAS  PubMed  Google Scholar 

  7. Hamaguchi M, Kojima T, Takeda N, et al. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med. 2005;143(10):722–8.

    Article  CAS  PubMed  Google Scholar 

  8. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterol. 2012;142(4):711–725.e6.

  9. Thörne A, Löfgren P, Hoffstedt J. Increased visceral adipocyte lipolysis–a pathogenic role in nonalcoholic fatty liver disease? J Clin Endocrinol Metab. 2010;95(10):E209–13.

    Article  PubMed  CAS  Google Scholar 

  10. Tilg H, Moschen A. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52(5):1836–46.

    Article  CAS  PubMed  Google Scholar 

  11. Luo Y, Burrington CM, Graff EC, et al. Metabolic phenotype and adipose and liver features in the high fat western diet-induced mouse model of obesity-linked NAFLD. Am J Physiol Endocrinol Metab 2015. doi:10.1152/ajpendo.00319.

  12. Ge CX, Yu R, Xu MX, et al. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats. Eur J Pharmacol. 2016;770:154–64.

  13. Yimin, Furumaki H, Matsuoka S, et al. A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab Investig. 2012;92(2):265–81.

  14. Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med. 2008;14(2):72–81.

    Article  CAS  PubMed  Google Scholar 

  15. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332(6037):1519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–5S.

    CAS  PubMed  Google Scholar 

  17. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29(1):415–45.

    Article  CAS  PubMed  Google Scholar 

  18. Phieler J, Chung K-J, Chatzigeorgiou A, et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J Immunol. 2013;191(8):4367–74.

    Article  CAS  PubMed  Google Scholar 

  19. Chatzigeorgiou  A, Karalis KP, Bornstein SR, Chavakis T. Lymphocytes in obesity-related adipose tissue inflammation. Diabetologia. 2012;55(10):2583–92.

  20. Chatzigeorgiou A, Chavakis T. Immune Cells and Metabolism. Handb Exp Pharmacol. 2015. doi:10.1007/164_2015_8.

  21. Garcia-Martin R, Alexaki VI, Qin N, et al. Adipocyte-Specific Hif2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation. Mol Cell Biol. 2015;36(3):376–93.

  22. McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2015;41(1):36–48.

    Article  CAS  Google Scholar 

  23. Brestoff JR, Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell. 2015;161(1):146–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mehal W The inflammasome in liver injury and non-alcoholic Fatty liver disease. Dig Dis. 2013;(Il):507–15.

  25. Liang W, Lindeman JH, Menke AL, et al. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. Lab Investig. 2014;94(5):491–502.

    Article  CAS  PubMed  Google Scholar 

  26. Fujii H, Kawada N. Inflammation and fibrogenesis in steatohepatitis. J Gastroenterol. 2012;47(3):215–25.

    Article  CAS  PubMed  Google Scholar 

  27. Marra F, Tacke F. Roles for Chemokines in Liver Disease. Gastroenterology. 2014;147(3):577–594.e1.

  28. Scapini P, Lapinet-Vera JA, Gasperini S, et al. The neutrophil as a cellular source of chemokines. Immunol Rev. 2000;177(1):195–203.

    Article  CAS  PubMed  Google Scholar 

  29. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Investig. 2000;80(5):617–53.

    Article  CAS  PubMed  Google Scholar 

  30. Nathan C Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  31. Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59(4):1393–405.

    Article  PubMed  Google Scholar 

  32. Alkhouri N, Morris-Stiff G, Campbell C, et al. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int. 2012;32(2):297–302.

    Article  CAS  PubMed  Google Scholar 

  33. Klebanoff S Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598–625.

    Article  CAS  PubMed  Google Scholar 

  34. Rensen SS, Slaats Y, Nijhuis J, et al. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am J Pathol. 2009;175(4):1473–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pulli B, Ali M, Iwamoto Y, et al. Myeloperoxidase-hepatocyte-stellate cell cross talk promotes hepatocyte injury and fibrosis in experimental nonalcoholic steatohepatitis. Antioxid Redox Signal. 2015;23(16):1255–69.

  36. Rensen SS, Bieghs V, Xanthoulea S, et al. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS ONE. 2012;7(12):e52411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hazen SL, Zhang R, Shen Z, et al. Formation of nitric oxide – derived oxidants by myeloperoxidase in monocytes. Circ Res. 1999;85:950–9.

    Article  CAS  PubMed  Google Scholar 

  38. Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10(7):1199–234.

    Article  CAS  PubMed  Google Scholar 

  39. Souza JM, Peluffo G, Radi R. Protein tyrosine nitration-functional alteration or just a biomarker? Free Radic Biol Med. 2008;45(4):357–66.

    Article  CAS  PubMed  Google Scholar 

  40. Schults MA, Nagle PW, Rensen SS, et al. Decreased nucleotide excision repair in steatotic livers associates with myeloperoxidase-immunoreactivity. Mutat Res. 2012;736(1–2):75–81.

    Article  CAS  PubMed  Google Scholar 

  41. Talukdar S, Oh DY, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2013;18(9):1407–12.

    Article  CAS  Google Scholar 

  42. Mansuy-Aubert V, Zhou QL, Xie X, et al. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 2013;17(4):534–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Syeda F, Tullis E, Slutsky AS, Zhang H. Human neutrophil peptides upregulate expression of COX-2 and endothelin-1 by inducing oxidative stress. Am J Physiol Heart Circ Physiol. 2008;294(6):H2769–74.

    Article  CAS  PubMed  Google Scholar 

  44. Porro G. A, Lee JH, de Azavedo J, et al. Direct and indirect bacterial killing functions of neutrophil defensins in lung explants. Am J Physiol Lung Cell Mol Physiol. 2001;281(5):L1240–7.

    CAS  PubMed  Google Scholar 

  45. Yang D, Chen Q, Chertov O, Oppenheim JJ. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol. 2000;68(1):9–14.

    CAS  PubMed  Google Scholar 

  46. Ibusuki R, Uto H, Arima S, et al. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet. Liver Int. 2013;33(10):1549–56.

    CAS  PubMed  Google Scholar 

  47. Moser M, Murphy KM. Dendritic cell regulation of TH1-TH2 development. Nat Immunol. 2000;1(3):199–205.

    Article  CAS  PubMed  Google Scholar 

  48. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  CAS  PubMed  Google Scholar 

  49. O’Keeffe M, Hochrein H, Vremec D, et al. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J Exp Med. 2002;196(10):1307–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Helft J, Ginhoux F, Bogunovic M, Merad M. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev. 2010;234(1):55–75.

    Article  CAS  PubMed  Google Scholar 

  51. Henning JR, Graffeo CS, Rehman A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology. 2013;58(2):589–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Connolly M, Bedrosian A. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-α. J Clin Invest. 2009;119(11):3213–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Miyake T, Akbar SM, Yoshida O, et al. Impaired dendritic cell functions disrupt antigen-specific adaptive immune responses in mice with nonalcoholic fatty liver disease. J Gastroenterol. 2010;45(8):859–67.

    Article  CAS  PubMed  Google Scholar 

  54. Ibrahim J, Nguyen AH, Rehman A, et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology. 2013;143(4):1061–72.

    Article  CAS  Google Scholar 

  55. Jiao J, Sastre D, Fiel MI, et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology. 2012;55(1):244–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bertola A, Ciucci T, Rousseau D, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012;61(9):2238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tang Y, Bian Z, Zhao L, et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol. 2011;166(2):281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rau M, Schilling AK, Meertens J, et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J Immunol. 2016;196(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  59. Harley IT, Stankiewicz TE, Giles DA, et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology. 2014;59(5):1830–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ju C, Pohl LR. Tolerogenic role of kupffer cells in immune-mediated adverse drug reactions. Toxicology. 2005;209(2):109–12.

    Article  CAS  PubMed  Google Scholar 

  61. Macchiarelli G, Motta PM, Fujita T. Scanning electron microscopy of the liver cells. Biopathology of the Liver. 1988:37–57.

  62. Stienstra R, Saudale F, Duval C, et al. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology. 2010;51(2):511–22.

    Article  CAS  PubMed  Google Scholar 

  63. De Taeye BM, Novitskaya T, McGuinness OP, et al. Macrophage TNF-alpha contributes to insulin resistance and hepatic steatosis in diet-induced obesity. Am J Physiol Endocrinol Metab. 2007;293(3):E713–25.

    Article  PubMed  CAS  Google Scholar 

  64. Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011;11(11):738–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Piña E, Geller DA. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res. 2008;147(1):153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 2010;59:347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lanthier N, Molendi-Coste O, Cani PD, et al. Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a high-fat diet. Faseb J. 2011;25(12):4301–11.

    Article  CAS  PubMed  Google Scholar 

  68. Lanthier N, Molendi-Coste O, Horsmans Y, et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am J Physiol Gastrointest Liver Physiol. 2010;298(1):G107–16.

    Article  CAS  PubMed  Google Scholar 

  69. Klein I, Cornejo JC, Polakos NK, et al. Kupffer cell heterogeneity : functional properties of bone marrow – derived and sessile hepatic macrophages. Blood. 2007;110(12):4077–85.

  70. Obstfeld AE, Sugaru E, Thearle M, et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010;59(4):916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Egan CE, Daugherity EK, Rogers AB, et al. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model. PLoS ONE. 2013;8(6):e65247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tacke F Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis Tissue Repair. 2012;5:S27.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302(11):G1310–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem. 2012;287(48):40161–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kudo H, Yata Y, Takahara T, et al. Telmisartan attenuates progression of steatohepatitis in mice: role of hepatic macrophage infiltration and effects on adipose tissue. Liver Int. 2009;29(7):988–96.

    Article  CAS  PubMed  Google Scholar 

  76. Nakashima H, Ogawa Y, Shono S, et al. Activation of CD11b + kupffer cells/macrophages as a common cause for exacerbation of TNF/Fas-ligand-dependent hepatitis in hypercholesterolemic mice. PLoS ONE. 2013;8(1):e49339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125(2):437–43.

    Article  PubMed  Google Scholar 

  78. Canbay A, Feldstein AE, Higuchi H, et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 2003;38(5):1188–98.

    Article  CAS  PubMed  Google Scholar 

  79. Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 2010;59(2):347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Negrin KA, Roth Flach RJ, DiStefano MT, et al. IL-1 signaling in obesity-induced hepatic lipogenesis and steatosis. PLoS ONE. 2014;9(9):e107265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Olteanu S, Kandel-Kfir M, Shaish A, et al. Lack of interleukin-1α in kupffer cells attenuates liver inflammation and expression of inflammatory cytokines in hypercholesterolaemic mice. Dig Liver Dis. 2014;46(5):433–9.

    Article  CAS  PubMed  Google Scholar 

  82. Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002;277(51):49982–8.

    Article  CAS  PubMed  Google Scholar 

  83. Podrez EA, Febbraio M, Sheibani N, et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest. 2000;105(8):1095–108.

  84. Bieghs V, Verheyen F, van Gorp PJ, et al. Internalization of modified lipids by CD36 and SR-a leads to hepatic inflammation and lysosomal cholesterol storage in kupffer cells. PLoS ONE. 2012;7(3):1–7.

    Article  CAS  Google Scholar 

  85. Walenbergh SM, Koek GH, Bieghs V, Shiri-Sverdlov R. Non-alcoholic steatohepatitis: the role of oxidized low-density lipoproteins. J Hepatol. 2013;58(4):801–10.

    Article  CAS  PubMed  Google Scholar 

  86. Bieghs V, Walenbergh SM, Hendrikx T, van Gorp PJ, et al. Trapping of oxidized LDL in lysosomes of kupffer cells is a trigger for hepatic inflammation. Liver Int. 2013;33(7):1056–61.

  87. Bieghs V, Wouters K, van Gorp PJ, et al. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice. Gastroenterology. 2010;138(7):2477–86, 2486.e1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leroux A, Ferrere G, Godie V, et al. Toxic lipids stored by kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol. 2012;57(1):141–9.

    Article  CAS  PubMed  Google Scholar 

  89. Hendrikx T, Bieghs V, Walenbergh SM, et al. Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice. PLoS ONE. 2013;8(12):e78792.

  90. Ioannou GN, Van Rooyen DM, Savard C, et al. Cholesterol-Lowering drugs Cause Dissolution of Cholesterol Crystals and Disperse Kupffer Cell Crown-Like Structures During Resolution of NASH. J Lipid Res. 2015;56:277–85.

  91. Breous E, Somanathan S, Vandenberghe LH, Wilson JM. Hepatic regulatory T cells and kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology. 2009;50(2):612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Papackova Z, Palenickova E, Dankova H, et al. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids : the evidence for the involvement of alternatively activated macrophages. Nutr Metab (Lond). 2012;9(1):1–15.

    Article  CAS  Google Scholar 

  93. Schmitt N, Ueno H. Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol. 2015;34:130–6.

    Article  CAS  PubMed  Google Scholar 

  94. Romagnani S Th1/Th2 cells. Inflamm Bowel Dis. 1999;5(4):285–94.

    Article  CAS  PubMed  Google Scholar 

  95. Lieberman J Anatomy of a murder: how cytotoxic T cells and NK cells are activated, develop, and eliminate their targets. Immunol Rev. 2010;235(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  96. Inzaugarat ME, Ferreyra Solari NE, Billordo LA, et al. Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J Clin Immunol. 2011;31(6):1120–30.

    Article  PubMed  Google Scholar 

  97. Ljunggren H-G, Glas R, Sandberg JK, Kärre K. Reactivity and specificity of CD8+ T cells in mice with defects in the MHC class I antigen-presenting pathway. Immunol Rev. 1996;151(1):123–48.

    Article  CAS  PubMed  Google Scholar 

  98. Arindkar S, Bhattacharjee J, Kumar JM, et al. Antigen peptide transporter 1 is involved in the development of fructose-induced hepatic steatosis in mice. J Gastroenterol Hepatol. 2013;28(8):1403–9.

    Article  CAS  PubMed  Google Scholar 

  99. Stockinger B, Veldhoen M, Martin B. Th17 T cells: linking innate and adaptive immunity. Semin Immunol. 2007;19(6):353–61.

    Article  CAS  PubMed  Google Scholar 

  100. Tan Z, Qian X, Jiang R, et al. IL-17 a plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol. 2013;191(4):1835–44.

    Article  CAS  PubMed  Google Scholar 

  101. Du WJ, Zhen JH, Zeng Z-Q, et al. Expression of interleukin-17 associated with disease progression and liver fibrosis with hepatitis B virus infection: IL-17 in HBV infection. Diagn Pathol. 2013;8(1):40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meng F, Wang K, Aoyama T, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143(3):765–76.e1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    Article  CAS  PubMed  Google Scholar 

  105. Wagner NM, Brandhorst G, Czepluch F, et al. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity. 2013;21(3):461–8.

    Article  CAS  PubMed  Google Scholar 

  106. Cipolletta D Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology. 2014;142(4):517–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Feuerer M, Herrero L, Cipolletta D, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15(8):930–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cipolletta D, Feuerer M, Li A, et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue treg cells. Nature. 2012;486(7404):549–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bapat SP, Myoung Suh J, Fang S, et al. Depletion of fat-resident treg cells prevents age-associated insulin resistance. Nature. 2015;528(7580):137–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ma X, Hua J, Mohamood AR, et al. A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury. Hepatology. 2007;46(5):1519–29.

    Article  CAS  PubMed  Google Scholar 

  111. Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12(4):431–40.

  112. Poggi M, Morin SO, Bastelica D, et al. CD28 deletion improves obesity-induced liver steatosis but increases adiposity in mice. Int J Obes. 2015;39(6):977–85.

    Article  CAS  Google Scholar 

  113. Chatzigeorgiou A, Chung K-J, Garcia-Martin R, et al. Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology. 2014;60(4):1196–210.

    Article  CAS  PubMed  Google Scholar 

  114. Zhong J, Rao X, Braunstein Z, et al. T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes. 2014;63(4):1289–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chatzigeorgiou A, Seijkens T, Zarzycka B, et al. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc Natl Acad Sci U S A. 2014;111(7):2686–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Guo CA, Kogan S, Amano SU, et al. CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance. Am J Physiol Endocrinol Metab. 2013;304(9):E951–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wolf D, Jehle F, Michel NA, et al. Coinhibitory suppression of T cell activation by CD40 protects against obesity and adipose tissue inflammation in mice. Circulation. 2014;129(23):2414–25.

    Article  CAS  PubMed  Google Scholar 

  118. van den Berg SM, Seijkens TT, Kusters PJ, et al. Blocking CD40-TRAF6 interactions by small-molecule inhibitor 6860766 ameliorates the complications of diet-induced obesity in mice. Int J Obes. 2015;39(5):782–90.

    Article  CAS  Google Scholar 

  119. Poggi M, Engel D, Christ A, et al. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler Thromb Vasc Biol. 2011;31(10):2251–60.

    Article  CAS  PubMed  Google Scholar 

  120. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25(1):297–336.

    Article  CAS  PubMed  Google Scholar 

  121. Kremer M, Thomas E, Milton RJ, et al. Kupffer cell and interleukin-12 dependent loss of natural killer T cells in hepatosteatosis. Hepatology. 2010;51(1):130–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu L, Parekh VV, Gabriel CL, et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc Natl Acad Sci U S A. 2012;109(19):E1143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Syn WK, Oo YH, Pereira TA, et al. Accumulation of NKT cells in progressive nonalcoholic fatty liver disease. Hepatology. 2010;51(6):1998–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Syn WK, Choi SS, Liaskou E, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53(1):106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Carpino G, Renzi A, Onori P, Gaudio E. Role of hepatic progenitor cells in nonalcoholic fatty liver disease development: cellular cross-talks and molecular networks. Int J Mol Sci. 2013;14(10):20112–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Blaner WS, O’Byrne SM, Wongsiriroj N, et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta. 2009;1791(6):467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Galli A, Crabb D, Price D, et al. Peroxisome proliferator-activated receptor gamma transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells. Hepatology. 2000;31(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  129. Tsukamoto H Adipogenic Phenotype of Hepatic Stellate Cells. Alcohol Clin Exp Res. 2005;29(Supplement):132S–3S.

    Article  CAS  PubMed  Google Scholar 

  130. Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 2000;119(2):466–78.

    Article  CAS  PubMed  Google Scholar 

  131. Galli A, Crabb DW, Ceni E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology. 2002;122(7):1924–40.

    Article  CAS  PubMed  Google Scholar 

  132. Enzan H, Himeno H, Iwamura S, et al. Immunohistochemical identification of Ito cells and their myofibroblastic transformation in adult human liver. Virchows Arch. 1994;424(3):249–56.

  133. Li JT, Liao ZX, Ping J, Xu D, Wang H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J Gastroenterol. 2008;43(6):419–28.

    Article  CAS  PubMed  Google Scholar 

  134. Nieto N, Friedman S. CYP2E1-mediated oxidative stress induces collagen type I expression in rat hepatic stellate cells. Hepatology. 1999;30(4):987–96.

    Article  CAS  PubMed  Google Scholar 

  135. Svegliati-Baroni G, Saccomanno S, Van Goor H, et al. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells. Liver. 2001;21(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  136. Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGFa and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest. 1995;96(November):2461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wheeler M The role of kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med. 2001;31(12):1544–9.

    Article  CAS  PubMed  Google Scholar 

  138. De Bleser PJ, Niki T, Rogiers V, Geerts A. Transforming growth factor-β gene expression in normal and fibrotic rat liver. J Hepatol 1997;26(4):886–893.

  139. Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFβ1 in initiating hepatic stellate cell activation in vivo. J Hepatol. 1999;30(1):77–87.

    Article  CAS  PubMed  Google Scholar 

  140. Yang Y, Kim B, Park YK, Koo SI, Lee JY. Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim Biophys Acta - Gen Subj. 2015;1850(1):178–85.

    Article  CAS  Google Scholar 

  141. Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 2013;58(4):1461–73.

    Article  CAS  PubMed  Google Scholar 

  142. Oakley F, Meso M, Iredale JP, et al. Inhibition of inhibitor of κB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology. 2005;128(1):108–20.

    Article  CAS  PubMed  Google Scholar 

  143. Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology. 2012;143(5):1158–72.

    Article  CAS  PubMed  Google Scholar 

  144. Weiskirchen R, Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr. 2014;3(6):344–63.

    PubMed  PubMed Central  Google Scholar 

  145. Potter JJ, Rennie-tankesley L, Mezey E. Influence of leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration. J Hepatol. 2003;38(4):281–8.

    Article  CAS  PubMed  Google Scholar 

  146. Chitturi S, Farrell G, Frost L, et al. Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology. 2002;36(2):403–9.

    Article  CAS  PubMed  Google Scholar 

  147. Otte C, Otte JM, Strodthoff D, et al. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis. Exp Clin Endocrinol Diabetes. 2004;112(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  148. Ikejima K, Takei Y, Honda H, et al. Leptin receptor–mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology. 2002;122(5):1399–410.

    Article  CAS  PubMed  Google Scholar 

  149. Wang J, Leclercq I, Brymora JM, et al. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 2009;137(2):713–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Choi SS, Syn WK, Karaca GF, et al. Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem. 2010;285(47):36551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Miyahara T, Schrum L, Rippe R, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem. 2000;275(46):35715–22.

    Article  CAS  PubMed  Google Scholar 

  152. Tsukamoto H, She H, Hazra S, Cheng J, Miyahara T. Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation. J Gastroenterol Hepatol. 2006;21(Suppl 3):S102–5.

    Article  CAS  PubMed  Google Scholar 

  153. Tsukamoto H, Zhu NL, Asahina K, Mann DA, Mann J. Epigenetic cell fate regulation of hepatic stellate cells. Hepatol Res. 2011;41(7):675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fuchs CD, Claudel T, Trauner M. Role of metabolic lipases and lipolytic metabolites in the pathogenesis of NAFLD. Trends Endocrinol Metab. 2015;25(11):576–85.

    Article  CAS  Google Scholar 

  155. Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59(2):713–23.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Rivera CA, Adegboyega P, van Rooijen N, et al. Toll-like receptor-4 signaling and kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 2007;47(4):571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Perry RJ, Camporez JP, Kursawe R, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Stefan N, Kantartzis K, Häring HU. Causes and metabolic consequences of fatty liver. Endocr Rev. 2008;29(7):939–60.

    Article  CAS  PubMed  Google Scholar 

  159. Wehr A, Baeck C, Ulmer F, et al. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. PLoS ONE. 2014;9(11):e112327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Baeck C, Wehr A, Karlmark KR, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012;61(3):416–26.

    Article  CAS  PubMed  Google Scholar 

  161. Zhang X, Han J, Man K, et al. CXC chemokine receptor 3 promotes steatohepatitis in mice through mediating inflammatory cytokines, macrophages and autophagy. J Hepatol. 2016;64(1):160–70.

  162. Zhang X, Shen J, Man K, et al. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J Hepatol. 2014;61(6):1365–75.

    Article  CAS  PubMed  Google Scholar 

  163. Deng YR, Ma HD, Tsuneyama K, et al. STAT3-mediated attenuation of CCl4-induced mouse liver fibrosis by the protein kinase inhibitor sorafenib. J Autoimmun. 2013;46:25–34.

    Article  CAS  PubMed  Google Scholar 

  164. Beraza N, Malato Y, Vander Borght S, et al. Pharmacological IKK2 inhibition blocks liver steatosis and initiation of non-alcoholic steatohepatitis. Gut. 2008;57(5):655–63.

    Article  CAS  PubMed  Google Scholar 

  165. Zhou Z, Liu Y, Chen X, Li F, Tong X, Ding Y, Tang C. Treatment of experimental non-alcoholic steatohepatitis by targeting α7 nicotinic acetylcholine receptor-mediated inflammatory responses in mice. Mol Med Rep. 2015;12(5):6925–31.

Download references

Acknowledgments

Supported by grants from the European Research Council (ENDHOMRET), the Else-Kröner-Fresenius Stiftung (2014_A137) (both to TC), as well as a MeDDriveStart grant from the TU- Dresden Medical Faculty (60.345 to AC).

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Chatzigeorgiou.

Additional information

Marina Nati and David Haddad contributed equally as first authors

Triantafyllos Chavakis and Antonios Chatzigeorgiou contributed equally as senior authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nati, M., Haddad, D., Birkenfeld, A.L. et al. The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev Endocr Metab Disord 17, 29–39 (2016). https://doi.org/10.1007/s11154-016-9339-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9339-2

Keywords

Navigation