Skip to main content

Advertisement

Log in

Oxidative Stress in Cerebrospinal Fluid of Patients with Aseptic and Bacterial Meningitis

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study aimed to determine whether patients with aseptic and bacterial meningitis presented alterations in oxidative stress parameters of cerebrospinal fluid (CSF). A total of 30 patients were used in the research. The CSF oxidative stress status has been evaluated through many parameters, such as lipid peroxidation through thiobarbituric acid reactive substances (TBARS) and antioxidant defense systems such as superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and ascorbic acid. TBARS levels, SOD and GST activity increase in aseptic meningitis and in bacterial meningitis. The ascorbic acid concentration increased significantly in patients with both meningitis types. The reduced glutathione levels were reduced in CSF of patients with aseptic and bacterial meningitis. In present study we may conclude that oxidative stress contributes at least in part to the severe neurological dysfunction found in meningitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dumont RA, Car BD, Voitenok NN et al (2000) Systemic neutralization of interleukin 8 markedly reduces neutrophilic pleocytosis during experimental lipopolysaccharide-induced meningitis in rabbits. Infect Immun 68(10):5756–5763. doi:10.1128/IAI.68.10.5756-5763.2000

    Article  PubMed  CAS  Google Scholar 

  2. Menaker J, Martin IBK, Hirshon JM (2005) Marked elevation of cerebrospinal fluid white blood cell count: an unusual case of Streptococcus pneumoniae meningitis, differential diagnosis, and a brief review of current epidemiology and treatment recommendations. J Emerg Med 29(1):37–41. doi:10.1016/j.jemermed.2004.12.017

    Article  PubMed  Google Scholar 

  3. Sáez-Llorenz X, McCracken GH Jr (2003) Bacterial meningitis in children. Lancet 361:2139–2148. doi:10.1016/S0140-6736(03)13693-8

    Article  Google Scholar 

  4. Straussberg R, Harel L, Nussinovitch M et al (2003) Absolute neutrophil count in aseptic and bacterial meningitis related to time of lumbar puncture. Pediatr Neurol 28:365–369. doi:10.1016/S0887-8994(03)00003-1

    Article  PubMed  Google Scholar 

  5. Negrini B, Kelleher KJ, Wald ER (2000) Cerebrospinal fluid findings in aseptic versus bacterial meningitis. Pediatrics 105(2):316–319. doi:10.1542/peds.105.2.316

    Article  PubMed  CAS  Google Scholar 

  6. Lewis H, Gibbon FM (2000) Management of viral meningitis and encephalitis. Curr Paediatr 10:110–115. doi:10.1054/cupe.2000.0095

    Article  Google Scholar 

  7. Portnoy JM, Olsen LC (1985) Normal cerebrospinal fluid values in children: another look. Pediatrics 75(3):484–487

    PubMed  CAS  Google Scholar 

  8. Rodriguez AF, Kaplan SL, Mason EO Jr (1990) Cerebrospinal fluid values in the very low birth weight infant. J Pediatr 116:971–974. doi:10.1016/S0022-3476(05)80663-8

    Article  PubMed  CAS  Google Scholar 

  9. Kawakami Y, Monobe M, Kuwabara K et al (2006) A comparative study of nitric oxide, glutathione, and glutathione peroxidase activities in cerebrospinal fluid from children with convulsive diseases/children with aseptic meningitis. Brain Dev 28:243–246. doi:10.1016/j.braindev.2005.08.010

    Article  PubMed  Google Scholar 

  10. Berr C, Richard MJ, Roussel AM et al (1998) Systemic oxidative stress and cognitive performance in the population-based EVA study. Free Radic Biol Med 24:1202–1208. doi:10.1016/S0891-5849(97)00432-2

    Article  PubMed  CAS  Google Scholar 

  11. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408:239–247. doi:10.1038/35041687

    Article  PubMed  CAS  Google Scholar 

  12. Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71(2):621S–629S

    PubMed  CAS  Google Scholar 

  13. Nunomura A, Castellani R, Zhu X et al (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 65(7):631–641. doi:10.1097/01.jnen.0000228136.58062.bf

    Article  PubMed  CAS  Google Scholar 

  14. Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 12(11):521–528. doi:10.1016/j.molmed.2006.09.007

    Article  PubMed  CAS  Google Scholar 

  15. Cookson M, Shaw P (1999) Oxidative stress and motor neurone disease. Brain Pathol 9(1):165–186

    Article  PubMed  CAS  Google Scholar 

  16. Butterfield DA, Castegna A (2003) Proteomic analysis of oxidatively modified proteins in Alzheimer’s disease brain: insights into neurodegeneration. Cell Mol Biol 49:747–751

    PubMed  CAS  Google Scholar 

  17. Sirtori LR, Dutra-Filho CS, Fitarelli D et al (2005) Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta 1740:68–73

    PubMed  CAS  Google Scholar 

  18. Uchida K (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med 28(12):1685–1696. doi:10.1016/S0891-5849(00)00226-4

    Article  PubMed  CAS  Google Scholar 

  19. Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189:41–54. doi:10.1016/S0300-483X(03)00151-3

    Article  PubMed  CAS  Google Scholar 

  20. Vaziri ND, Wang XQ, Oveisi F (2000) Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 36(1):142–146

    PubMed  CAS  Google Scholar 

  21. Jacob MHVM, Pontes MRN, Araújo ASR et al (2006) Aortic-banding induces myocardial oxidative stress and changes in concentration and activity of antioxidants in male Wistar rats. Life Sci 79:2187–2193. doi:10.1016/j.lfs.2006.07.015

    Article  PubMed  CAS  Google Scholar 

  22. Lönnrot K, Metsä-Ketelä T, Molnár G et al (1996) The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity. Free Radic Biol Med 21(2):211–217. doi:10.1016/0891-5849(95)02207-4

    Article  PubMed  Google Scholar 

  23. Halliwell BH (1992) Oxygen radicals as key mediators in neurological disease: fact or fiction? Ann Neurol 32:510–515. doi:10.1002/ana.410320704

    Article  Google Scholar 

  24. Siqueira IR, Fochesatto C, Andrade A et al (2005) Total antioxidant capacity is impaired in different structures from aged rat brain. Int J Dev Neurosci 23:663–671. doi:10.1016/j.ijdevneu.2005.03.001

    Article  PubMed  CAS  Google Scholar 

  25. Kuzma M, Jamrozik Z, Baranczyk-Kuzma A (2006) Activity and expression of glutathione S-transferase pi in patients with amyotrophic lateral sclerosis. Clin Chim Acta 364:217–221. doi:10.1016/j.cccn.2005.07.008

    Article  PubMed  CAS  Google Scholar 

  26. Grünewald RA (1993) Ascorbic acid in the brain. Brain Res 18:123–133. doi:10.1016/0165-0173(93)90010-W

    Article  Google Scholar 

  27. Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defense against oxidative stress. Free Radic Res 31(4):273–300. doi:10.1080/10715769900300851

    Article  PubMed  CAS  Google Scholar 

  28. Chan AC (1993) Partners in defense, vitamin E and vitamin C. Can J Physiol Pharmacol 71(9):725–731

    PubMed  CAS  Google Scholar 

  29. Fumeron C, Nguyen-Khoa T, Saltiel C et al (2005) Effects of oral vitamin C supplementation on oxidative stress and inflammation status in haemodialysis patients. Nephrol Dial Transplant 20:1874–1879. doi:10.1093/ndt/gfh928

    Article  PubMed  CAS  Google Scholar 

  30. Jentzsch AM, Bachmann H, Fürst P et al (1996) Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20(2):251–256. doi:10.1016/0891-5849(95)02043-8

    Article  PubMed  CAS  Google Scholar 

  31. Misra HP, Fridovich L (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    PubMed  CAS  Google Scholar 

  32. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    PubMed  CAS  Google Scholar 

  33. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6

    Article  PubMed  CAS  Google Scholar 

  34. Jacques-Silva MC, Nogueira CW, Broch LC et al (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol Toxicol 88:119–127. doi:10.1034/j.1600-0773.2001.d01-92.x

    Article  PubMed  CAS  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  36. Ugochukwu NH, Mukes JD, Figgers CL (2006) Ameliorative effects of dietary caloric restriction on oxidative stress and inflammation in the brain of streptozotocin-induced diabetic rats. Clin Chim Acta 370:165–173. doi:10.1016/j.cca.2006.02.003

    Article  PubMed  CAS  Google Scholar 

  37. Tsukahara H, Haruta T, Todoroki Y et al (2002) Oxidant and antioxidant activities in childhood meningitis. Life Sci 71:2797–2806. doi:10.1016/S0024-3205(02)02137-9

    Article  PubMed  CAS  Google Scholar 

  38. Koedel U, Pfister HW (1999) Superoxide production by primary rat cerebral endothelial cells in response to Pneumococci. J Neuroimmunol 96:190–200. doi:10.1016/S0165-5728(99)00033-8

    Article  PubMed  CAS  Google Scholar 

  39. Hirose Y, Mokuno K, Wakai M et al (1995) Elevated cerebrospinal fluid levels of manganese superoxide dismutase in bacterial meningitis. J Neurol Sci 131:51–57. doi:10.1016/0022-510X(95)00040-9

    Article  PubMed  CAS  Google Scholar 

  40. Aycicek A, Iscan A, Erel O et al (2007) Oxidant and antioxidant parameters in the treatment of meningitis. Pediatr Neurol 37(2):117–120. doi:10.1016/j.pediatrneurol.2007.04.002

    Article  PubMed  Google Scholar 

  41. Aycicek A, Iscan A, Erel O et al (2006) Total antioxidant/oxidant status in meningism and meningitis. Pediatr Neurol 35(6):382–386. doi:10.1016/j.pediatrneurol.2006.07.003

    Article  PubMed  Google Scholar 

  42. Caksen H, Cemek M, Dede S et al (2004) Brief clinical study: lipid peroxidation and antioxidant status in children with acute purulent meningitis and encephalitis. Int J Neurosci 114:105–111. doi:10.1080/00207450490249383

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vania Lúcia Loro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Menezes, C.C., Dorneles, A.G., Sperotto, R.L. et al. Oxidative Stress in Cerebrospinal Fluid of Patients with Aseptic and Bacterial Meningitis. Neurochem Res 34, 1255–1260 (2009). https://doi.org/10.1007/s11064-008-9903-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9903-6

Keywords

Navigation