Skip to main content

Advertisement

Log in

Recommendations for the radiological diagnosis and follow-up of neuropathological abnormalities associated with tuberous sclerosis complex

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Tuberous sclerosis complex (TSC) is a genetic condition with multisystem involvement, characterized by the development of tumors and other abnormalities in organs such as the brain, retina, skin, heart, kidneys, and lungs. Most patients have neuropathological abnormalities such as cortical tubers, white matter radial migration lines, subependymal nodules, and subependymal giant cell astrocytomas (SEGAs). These lesions are associated with different neurological manifestations that are frequently associated with TSC. These manifestations consist of epilepsy, intellectual disability, and neurobehavioral and psychiatric problems, including autism spectrum disorder. Hydrocephalus may also develop in patients with SEGAs due to ventricular obstruction, when this usually slow-growing tumor reaches sufficient size. Surgery has been the classical approach to treat SEGAs, although this treatment is associated with substantial morbidity and does not completely prevent tumor recurrence. Recently, the mammalian target of rapamycin (mTOR) inhibitor, everolimus, has been approved by the Food and Drug Administration and the European Medicines Agency for the treatment of patients with SEGAs associated with TSC. However, the treatment of SEGAs with these agents requires the development of guidelines that establish a differential diagnosis between SENs and SEGAs, in which neuroradiological examinations play an essential role. With the aim of improving the neuroradiological diagnosis and follow-up of the neuropathological abnormalities associated with TSC, a group of experts in this field has reviewed different aspects related to these issues and put together, a series of statements and recommendations intended to provide guidance to specialists involved in the management of TSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Curatolo P, Bombardieri R, Jozwiak S (2008) Tuberous sclerosis. Lancet 372:657–668. doi:10.1016/S0140-6736(08)61279-9

    CAS  PubMed  Google Scholar 

  2. Grajkowska W, Kotulska K, Jurkiewicz E, Matyja E (2010) Brain lesions in tuberous sclerosis complex. Folia Neuropathol 48:139–149

    PubMed  Google Scholar 

  3. Roach ES, Sparagana SP (2004) Diagnosis of tuberous sclerosis complex. J Child Neurol 19:643–649

    PubMed  Google Scholar 

  4. Sparagana SP, Roach ES (2000) Tuberous sclerosis complex. Curr Opin Neurol 13:115–119

    CAS  PubMed  Google Scholar 

  5. Staley BA, Vail EA, Thiele EA (2011) Tuberous sclerosis complex: diagnostic challenges, presenting symptoms, and commonly missed signs. Pediatrics 127:e117–e125. doi:10.1542/peds.2010-0192

    PubMed Central  PubMed  Google Scholar 

  6. Rakowski SK, Winterkorn EB, Paul E, Steele DJ, Halpern EF, Thiele EA (2006) Renal manifestations of tuberous sclerosis complex: incidence, prognosis, and predictive factors. Kidney Int 70:1777–1782. doi:10.1038/sj.ki.5001853

    CAS  PubMed  Google Scholar 

  7. Au KS, Ward CH, Northrup H (2008) Tuberous sclerosis complex: disease modifiers and treatments. Curr Opin Pediatr 20:628–633. doi:10.1097/MOP.0b013e328318c529

    PubMed  Google Scholar 

  8. Chan JA, Zhang H, Roberts PS, Jozwiak S, Wieslawa G, Lewin-Kowalik J, Kotulska K, Kwiatkowski DJ (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63:1236–1242

    CAS  PubMed  Google Scholar 

  9. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80. doi:10.1086/316951

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190. doi:10.1042/BJ20080281

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Pascual-Castroviejo I, Pascual-Pascual SI, Velazquez R, van den Ouweland AM, Halley DJ (2006) Tuberous sclerosis complex type 1 (TSC1): diagnostic significance of the cutaneous mini-lesions in a familial presentation. Neurologia 21:386–388

    CAS  PubMed  Google Scholar 

  12. DiMario FJ Jr (2004) Brain abnormalities in tuberous sclerosis complex. J Child Neurol 19:650–657

    PubMed  Google Scholar 

  13. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356. doi:10.1056/NEJMra055323

    CAS  PubMed  Google Scholar 

  14. Franz DN, Bissler JJ, McCormack FX (2010) Tuberous sclerosis complex: neurological, renal and pulmonary manifestations. Neuropediatrics 41:199–208. doi:10.1055/s-0030-1269906

    CAS  PubMed  Google Scholar 

  15. Artigas-Pallares J, Gabau-Vila E, Guitart-Feliubadalo M (2005) Syndromic autism: II. Genetic syndromes associated with autism. Rev Neurol 40:S151–S162

    PubMed  Google Scholar 

  16. Goh S, Butler W, Thiele EA (2004) Subependymal giant cell tumors in tuberous sclerosis complex. Neurology 63:1457–1461

    PubMed  Google Scholar 

  17. Pascual-Castroviejo I, Pascual-Pascual SI, Velazquez-Fragua R, Viano J, Carceller F, Hernandez-Moneo JL, Gutierrez-Molina M, Morales C (2010) Subependymal giant cell astrocytoma in tuberous sclerosis complex. A presentation of eight paediatric patients. Neurologia 25:314–321

    CAS  PubMed  Google Scholar 

  18. de Vries PJ (2010) Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex. Neurotherapeutics 7:275–282. doi:10.1016/j.nurt.2010.05.001

    PubMed  Google Scholar 

  19. Napolioni V, Curatolo P (2008) Genetics and molecular biology of tuberous sclerosis complex. Curr Genomics 9:475–487. doi:10.2174/138920208786241243

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Winterkorn EB, Pulsifer MB, Thiele EA (2007) Cognitive prognosis of patients with tuberous sclerosis complex. Neurology 68:62–64. doi: 10.1212/01.wnl.0000250330.44291.54

    PubMed  Google Scholar 

  21. Samir H, Ghaffar HA, Nasr M (2011) Seizures and intellectual outcome: clinico-radiological study of 30 Egyptian cases of tuberous sclerosis complex. Eur J Paediatr Neurol 15:131–137. doi:10.1016/j.ejpn.2010.07.010

    PubMed  Google Scholar 

  22. Kim WS (2011) Mammalian target of rapamycin inhibitors for treatment in tuberous sclerosis. Korean J Pediatr 54:241–245. doi:10.3345/kjp.2011.54.6.241

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Krueger DA, Franz DN (2008) Current management of tuberous sclerosis complex. Paediatr Drugs 10:299–313

    PubMed  Google Scholar 

  24. Levine NB, Collins J, Franz DN, Crone KR (2006) Gradual formation of an operative corridor by balloon dilation for resection of subependymal giant cell astrocytomas in children with tuberous sclerosis: specialized minimal access technique of balloon dilation. Minim Invasive Neurosurg 49:317–320. doi:10.1055/s-2006-950391

    CAS  PubMed  Google Scholar 

  25. Jozwiak S, Nabbout R, Curatolo P (2013) Management of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC): clinical recommendations. Eur J Paediatr Neurol. doi:10.1016/j.ejpn.2012.12.008

    Google Scholar 

  26. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, Witt O, Kohrman MH, Flamini JR, Wu JY, Curatolo P, de Vries PJ, Whittemore VH, Thiele EA, Ford JP, Shah G, Cauwel H, Lebwohl D, Sahmoud T, Jozwiak S (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381:125–132. doi:10.1016/S0140-6736(12)61134-9

    CAS  PubMed  Google Scholar 

  27. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811. doi:10.1056/NEJMoa1001671

    CAS  PubMed  Google Scholar 

  28. Berhouma M (2010) Management of subependymal giant cell tumors in tuberous sclerosis complex: the neurosurgeon’s perspective. World J Pediatr 6:103–110. doi:10.1007/s12519-010-0025-2

    PubMed  Google Scholar 

  29. Jozwiak J, Jozwiak S, Wlodarski P (2008) Possible mechanisms of disease development in tuberous sclerosis. Lancet Oncol 9:73–79. doi:10.1016/S1470-2045(07)70411-4

    CAS  PubMed  Google Scholar 

  30. Major P (2011) Potential of mTOR inhibitors for the treatment of subependymal giant cell astrocytomas in tuberous sclerosis complex. Aging (Albany NY) 3:189–191

    CAS  Google Scholar 

  31. Wong M (2010) Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: from tuberous sclerosis to common acquired epilepsies. Epilepsia 51:27–36

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Evans JC, Curtis J (2000) The radiological appearances of tuberous sclerosis. Br J Radiol 73:91–98

    CAS  PubMed  Google Scholar 

  33. Baskin HJ Jr (2008) The pathogenesis and imaging of the tuberous sclerosis complex. Pediatr Radiol 38:936–952. doi:10.1007/s00247-008-0832-y

    PubMed  Google Scholar 

  34. Jurkiewicz E, Jozwiak S, Bekiesinska-Figatowska M, Pakula-Kosciesza I, Walecki J (2006) Cyst-like cortical tubers in patients with tuberous sclerosis complex: mR imaging with the FLAIR sequence. Pediatr Radiol 36:498–501. doi:10.1007/s00247-006-0142-1

    PubMed  Google Scholar 

  35. Rott HD, Lemcke B, Zenker M, Huk W, Horst J, Mayer K (2002) Cyst-like cerebral lesions in tuberous sclerosis. Am J Med Genet 111:435–439. doi:10.1002/ajmg.10637

    PubMed  Google Scholar 

  36. Kalantari BN, Salamon N (2008) Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. AJR Am J Roentgenol 190:W304–W309

    PubMed  Google Scholar 

  37. Chu-Shore CJ, Frosch MP, Grant PE, Thiele EA (2009) Progressive multifocal cystlike cortical tubers in tuberous sclerosis complex: clinical and neuropathologic findings. Epilepsia 50:2648–2651. doi:10.1111/j.1528-1167.2009.02193.x

    PubMed  Google Scholar 

  38. van Eeghen AM, Teran LO, Johnson J, Pulsifer MB, Thiele EA, Caruso P (2013) The neuroanatomical phenotype of tuberous sclerosis complex: focus on radial migration lines. Neuroradiology 55:1007–1014. doi:10.1007/s00234-013-1184-3

    PubMed  Google Scholar 

  39. de Ribaupierre S, Dorfmuller G, Bulteau C, Fohlen M, Pinard JM, Chiron C, Delalande O (2007) Subependymal giant-cell astrocytomas in pediatric tuberous sclerosis disease: when should we operate? Neurosurgery 60:83–89. doi:10.1227/01.NEU.0000249216.19591.5D

    PubMed  Google Scholar 

  40. Nabbout R, Santos M, Rolland Y, Delalande O, Dulac O, Chiron C (1999) Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis. J Neurol Neurosurg Psychiatry 66:370–375

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Hussain N, Curran A, Pilling D, Malluci CL, Ladusans EJ, Alfirevic Z, Pizer B (2006) Congenital subependymal giant cell astrocytoma diagnosed on fetal MRI. Arch Dis Child 91:520. doi:10.1136/adc.2005.081703

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Sonigo P, Elmaleh A, Fermont L, Delezoide AL, Mirlesse V, Brunelle F (1996) Prenatal MRI diagnosis of fetal cerebral tuberous sclerosis. Pediatr Radiol 26:1–4

    CAS  PubMed  Google Scholar 

  43. Torres OA, Roach ES, Delgado MR, Sparagana SP, Sheffield E, Swift D, Bruce D (1998) Early diagnosis of subependymal giant cell astrocytoma in patients with tuberous sclerosis. J Child Neurol 13:173–177

    CAS  PubMed  Google Scholar 

  44. Vaughn J, Hagiwara M, Katz J, Roth J, Devinsky O, Weiner H, Milla S (2013) MRI characterization and longitudinal study of focal cerebellar lesions in a young tuberous sclerosis cohort. AJNR Am J Neuroradiol 34:655–659. doi:10.3174/ajnr.A3260

    CAS  PubMed  Google Scholar 

  45. Arca G, Pacheco E, Alfonso I, Duchowny MS, Melnick SJ (2006) Characteristic brain magnetic resonance imaging (MRI) findings in neonates with tuberous sclerosis complex. J Child Neurol 21:280–285

    PubMed  Google Scholar 

  46. Jurkiewicz E, Jozwiak S (2006) Giant intracranial aneurysm in a 9-year-old boy with tuberous sclerosis. Pediatr Radiol 36:463. doi:10.1007/s00247-005-0092-z

    PubMed  Google Scholar 

  47. Robain O, Floquet C, Heldt N, Rozenberg F (1988) Hemimegalencephaly: a clinicopathological study of four cases. Neuropathol Appl Neurobiol 14:125–135

    CAS  PubMed  Google Scholar 

  48. Levine D, Barnes P, Korf B, Edelman R (2000) Tuberous sclerosis in the fetus: second-trimester diagnosis of subependymal tubers with ultrafast MR imaging. AJR Am J Roentgenol 175:1067–1069

    CAS  PubMed  Google Scholar 

  49. Sgro M, Barozzino T, Toi A, Johnson J, Sermer M, Chitayat D (1999) Prenatal detection of cerebral lesions in a fetus with tuberous sclerosis. Ultrasound Obstet Gynecol 14:356–359. doi:10.1046/j.1469-0705.1999.14050356.x

    CAS  PubMed  Google Scholar 

  50. Saada J, Hadj Rabia S, Fermont L, Le Bidois J, Bernardes LS, Martinovic J, Sonigo P, Dumez Y, Bonnet D, Benachi A (2009) Prenatal diagnosis of cardiac rhabdomyomas: incidence of associated cerebral lesions of tuberous sclerosis complex. Ultrasound Obstet Gynecol 34:155–159. doi:10.1002/uog.6367

    CAS  PubMed  Google Scholar 

  51. Mühler MR, Rake A, Schwabe M, Schmidt S, Kivelitz D, Chaoui R, Hamm B (2007) Value of fetal cerebral MRI in sonographically proven cardiac rhabdomyoma. Pediatr Radiol 37:467–474. doi:10.1007/s00247-007-0436-y

    PubMed  Google Scholar 

  52. Baron Y, Barkovich AJ (1999) MR imaging of tuberous sclerosis in neonates and young infants. AJNR Am J Neuroradiol 20:907–916

    CAS  PubMed  Google Scholar 

  53. Goodman M, Lamm SH, Engel A, Shepherd CW, Houser OW, Gomez MR (1997) Cortical tuber count: a biomarker indicating neurologic severity of tuberous sclerosis complex. J Child Neurol 12:85–90

    CAS  PubMed  Google Scholar 

  54. Doherty C, Goh S, Young Poussaint T, Erdag N, Thiele EA (2005) Prognostic significance of tuber count and location in tuberous sclerosis complex. J Child Neurol 20:837–841

    PubMed  Google Scholar 

  55. O’Callaghan FJ, Harris T, Joinson C, Bolton P, Noakes M, Presdee D, Renowden S, Shiell A, Martyn CN, Osborne JP (2004) The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex. Arch Dis Child 89:530–533

    PubMed Central  PubMed  Google Scholar 

  56. Pascual-Castroviejo I, Hernandez-Moneo JL, Pascual-Pascual SI, Viano J, Gutierrez-Molina M, Velazquez-Fragua R, Quinones Tapia D, Morales Bastos C (2012) Significance of tuber size for complications of tuberous sclerosis complex. Neurologia. doi:10.1016/j.nrl.2012.11.002

    Google Scholar 

  57. Gallagher A, Grant EP, Madan N, Jarrett DY, Lyczkowski DA, Thiele EA (2010) MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol 257:1373–1381. doi:10.1007/s00415-010-5535-2

    PubMed Central  PubMed  Google Scholar 

  58. Jansen FE, Vincken KL, Algra A, Anbeek P, Braams O, Nellist M, Zonnenberg BA, Jennekens-Schinkel A, van den Ouweland A, Halley D, van Huffelen AC, van Nieuwenhuizen O (2008) Cognitive impairment in tuberous sclerosis complex is a multifactorial condition. Neurology 70:916–923. doi:10.1212/01.wnl.0000280579.04974.c0

    CAS  PubMed  Google Scholar 

  59. Ma TS, Elliott RE, Ruppe V, Devinsky O, Kuzniecky R, Weiner HL, Carlson C (2012) Electrocorticographic evidence of perituberal cortex epileptogenicity in tuberous sclerosis complex. J Neurosurg Pediatr 10:376–382. doi:10.3171/2012.8.PEDS1285

    PubMed  Google Scholar 

  60. Major P, Rakowski S, Simon MV, Cheng ML, Eskandar E, Baron J, Leeman BA, Frosch MP, Thiele EA (2009) Are cortical tubers epileptogenic? Evidence from electrocorticography. Epilepsia 50:147–154. doi:10.1111/j.1528-1167.2008.01814.x

    PubMed  Google Scholar 

  61. Chou IJ, Lin KL, Wong AM, Wang HS, Chou ML, Hung PC, Hsieh MY, Chang MY (2008) Neuroimaging correlation with neurological severity in tuberous sclerosis complex. Eur J Paediatr Neurol 12:108–112. doi:10.1016/j.ejpn.2007.07.002

    PubMed  Google Scholar 

  62. Numis AL, Major P, Montenegro MA, Muzykewicz DA, Pulsifer MB, Thiele EA (2011) Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology 76:981–987. doi:10.1212/WNL.0b013e3182104347

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Ertan G, Arulrajah S, Tekes A, Jordan L, Huisman TA (2010) Cerebellar abnormality in children and young adults with tuberous sclerosis complex: MR and diffusion weighted imaging findings. J Neuroradiol 37:231–238. doi:10.1016/j.neurad.2009.12.006

    CAS  PubMed  Google Scholar 

  64. Eluvathingal TJ, Behen ME, Chugani HT, Janisse J, Bernardi B, Chakraborty P, Juhasz C, Muzik O, Chugani DC (2006) Cerebellar lesions in tuberous sclerosis complex: neurobehavioral and neuroimaging correlates. J Child Neurol 21:846–851

    PubMed  Google Scholar 

  65. Peters JM, Sahin M, Vogel-Farley VK, Jeste SS, Nelson CA III, Gregas MC, Prabhu SP, Scherrer B, Warfield SK (2012) Loss of white matter microstructural integrity is associated with adverse neurological outcome in tuberous sclerosis complex. Acad Radiol 19:17–25. doi:10.1016/j.acra.2011.08.016

    PubMed Central  PubMed  Google Scholar 

  66. Chu-Shore CJ, Major P, Montenegro M, Thiele E (2009) Cyst-like tubers are associated with TSC2 and epilepsy in tuberous sclerosis complex. Neurology 72:1165–1169. doi:10.1212/01.wnl.0000345365.92821.86

    PubMed  Google Scholar 

  67. Marcotte L, Aronica E, Baybis M, Crino PB (2012) Cytoarchitectural alterations are widespread in cerebral cortex in tuberous sclerosis complex. Acta Neuropathol 123:685–693. doi:10.1007/s00401-012-0950-3

    PubMed  Google Scholar 

  68. Bader RS, Chitayat D, Kelly E, Ryan G, Smallhorn JF, Toi A, Hornberger LK (2003) Fetal rhabdomyoma: prenatal diagnosis, clinical outcome, and incidence of associated tuberous sclerosis complex. J Pediatr 143:620–624. doi:10.1067/S0022-3476(03)00494-3

    PubMed  Google Scholar 

  69. Chao AS, Chao A, Wang TH, Chang YC, Chang YL, Hsieh CC, Lien R, Su WJ (2008) Outcome of antenatally diagnosed cardiac rhabdomyoma: case series and a meta-analysis. Ultrasound Obstet Gynecol 31:289–295. doi:10.1002/uog.5264

    CAS  PubMed  Google Scholar 

  70. Wortmann SB, Reimer A, Creemers JW, Mullaart RA (2008) Prenatal diagnosis of cerebral lesions in Tuberous sclerosis complex (TSC). Case report and review of the literature. Eur J Paediatr Neurol 12:123–126. doi:10.1016/j.ejpn.2007.06.006

    CAS  PubMed  Google Scholar 

  71. Rumack C, Wilson S, Charboneau J, Levine D (2011) Diagnostic ultrasound. In: Stamm ER, Drose JA (eds) The fetal heart, 4th edn. Mosby, Philadelphia

    Google Scholar 

  72. Chen CP, Liu YP, Huang JK, Chang TY, Chen MR, Chiu NC, Wang W (2005) Contribution of ultrafast magnetic resonance imaging in prenatal diagnosis of sonographically undetected cerebral tuberous sclerosis associated with cardiac rhabdomyomas. Prenat Diagn 25:523–524. doi:10.1002/pd.1182

    PubMed  Google Scholar 

  73. Barkovich AJ, Raybaud C (2012) Pediatric neuroimaging, 5th edn. Lippincott, Philadelphia

    Google Scholar 

  74. Inoue Y, Nemoto Y, Murata R, Tashiro T, Shakudo M, Kohno K, Matsuoka O, Mochizuki K (1998) CT and MR imaging of cerebral tuberous sclerosis. Brain Dev 20:209–221

    CAS  PubMed  Google Scholar 

  75. Griffiths PD, Martland TR (1997) Tuberous Sclerosis Complex: the role of neuroradiology. Neuropediatrics 28:244–252. doi:10.1055/s-2007-973708

    CAS  PubMed  Google Scholar 

  76. Menor F, Marti-Bonmati L, Mulas F, Poyatos C, Cortina H (1992) Neuroimaging in tuberous sclerosis: a clinicoradiological evaluation in pediatric patients. Pediatr Radiol 22:485–489

    CAS  PubMed  Google Scholar 

  77. McGregor A, Caron E, Perkins F, Wheless J, Choudhri A (2012) Comparison of MRI sequences to CT in identification of calcified subependymal nodules in tuberous sclerosis patients. Neurology 78:1

    Google Scholar 

  78. Griffiths PD, Hoggard N (2009) Distribution and conspicuity of intracranial abnormalities on MR imaging in adults with tuberous sclerosis complex: a comparison of sequences including ultrafast T2-weighted images. Epilepsia 50:2605–2610. doi:10.1111/j.1528-1167.2009.02107.x

    PubMed  Google Scholar 

  79. Luat AF, Makki M, Chugani HT (2007) Neuroimaging in tuberous sclerosis complex. Curr Opin Neurol 20:142–150. doi:10.1097/WCO.0b013e3280895d93

    CAS  PubMed  Google Scholar 

  80. Pinto Gama HP, da Rocha AJ, Braga FT, da Silva CJ, Maia AC Jr, de Campos Meirelles RG, Mendonca do Rego JI, Lederman HM (2006) Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis. Pediatr Radiol 36:119–125. doi:10.1007/s00247-005-0033-x

    PubMed  Google Scholar 

  81. Thomsen HS, Morcos SK, Almen T, Bellin MF, Bertolotto M, Bongartz G, Clement O, Leander P, Heinz-Peer G, Reimer P, Stacul F, van der Molen A, Webb JA (2013) Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 23:307–318. doi:10.1007/s00330-012-2597-9

    PubMed  Google Scholar 

  82. DiMario FJ Jr, Cobb RJ, Ramsby GR, Leicher C (1993) Familial band heterotopias simulating tuberous sclerosis. Neurology 43:1424–1426

    PubMed  Google Scholar 

  83. Garel C (2004) MRI of the fetal brain. Normal development and cerebral pathologies. Springer, Berlin

    Google Scholar 

  84. Martín Fernández-Mayoralas D, Recio-Rodríguez M, Fernández-Jaen A, Jiménez de la Peña M, Marrero Brito J, Muñoz Jareño N (2012) Resonancia magnética fetal en la esclerosis tuberosa. Acta Pediatr Esp 70:e39–e43

    Google Scholar 

  85. Adriaensen ME, Schaefer-Prokop CM, Stijnen T, Duyndam DA, Zonnenberg BA, Prokop M (2009) Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol 16:691–696. doi:10.1111/j.1468-1331.2009.02567.x

    CAS  PubMed  Google Scholar 

  86. Shepherd CW, Scheithauer BW, Gomez MR, Altermatt HJ, Katzmann JA (1991) Subependymal giant cell astrocytoma: a clinical, pathological, and flow cytometric study. Neurosurgery 28:864–868

    CAS  PubMed  Google Scholar 

  87. Raju GP, Urion DK, Sahin M (2007) Neonatal subependymal giant cell astrocytoma: new case and review of literature. Pediatr Neurol 36:128–131. doi:10.1016/j.pediatrneurol.2006.08.009

    PubMed  Google Scholar 

  88. Braffman BH, Bilaniuk LT, Naidich TP, Altman NR, Post MJ, Quencer RM, Zimmerman RA, Brody BA (1992) MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis, use of gadopentetate dimeglumine, and literature review. Radiology 183:227–238

    CAS  PubMed  Google Scholar 

  89. O’Callaghan FJ, Martyn CN, Renowden S, Noakes M, Presdee D, Osborne JP (2008) Subependymal nodules, giant cell astrocytomas and the tuberous sclerosis complex: a population-based study. Arch Dis Child 93:751–754. doi:10.1136/adc.2007.125880

    PubMed  Google Scholar 

  90. Michelozzi C, Di Leo G, Galli F, Silva Barbosa F, Labriola F, Sardanelli F, Cornalba G (2013) Subependymal nodules and giant cell tumours in tuberous sclerosis complex patients: prevalence on MRI in relation to gene mutation. Childs Nerv Syst 29:249–254. doi:10.1007/s00381-012-1892-8

    PubMed  Google Scholar 

  91. Genitori L (2006) Neurocutaneous syndromes in children, neurosurgical strategies in the management of subependymal giant cell tumors in tuberous sclerosis complex. John Libbey Eurotext, Philadelphia

    Google Scholar 

  92. Laverda A, Zampieri S (2006) Subependimal giant cell astrocytomas and tuberous sclerosis. In: Curatolo P, Riva D (eds) Neurocutanous syndromes in children. John Libbey Eurotext, Philadelphia

    Google Scholar 

  93. Campen CJ, Porter BE (2011) Subependymal giant cell astrocytoma (SEGA) treatment update. Curr Treat Options Neurol 13:380–385. doi:10.1007/s11940-011-0123-z

    PubMed Central  PubMed  Google Scholar 

  94. Shepherd CW, Gomez MR (1991) Mortality in the mayo clinic tuberous sclerosis complex Study. Ann N Y Acad Sci 615:375–377

    CAS  PubMed  Google Scholar 

  95. Webb DW, Fryer AE, Osborne JP (1996) Morbidity associated with tuberous sclerosis: a population study. Dev Med Child Neurol 38:146–155

    CAS  PubMed  Google Scholar 

  96. Clarke MJ, Foy AB, Wetjen N, Raffel C (2006) Imaging characteristics and growth of subependymal giant cell astrocytomas. Neurosurg Focus 20:E5

    PubMed  Google Scholar 

  97. Koeller KK, Sandberg GD (2002) From the archives of the AFIP. Cerebral intraventricular neoplasms: radiologic-pathologic correlation. Radiographics 22:1473–1505

    PubMed  Google Scholar 

  98. Beaumont TL, Limbrick DD, Smyth MD (2012) Advances in the management of subependymal giant cell astrocytoma. Childs Nerv Syst 28:963–968. doi:10.1007/s00381-012-1785-x

    PubMed  Google Scholar 

  99. Cuccia V, Zuccaro G, Sosa F, Monges J, Lubienieky F, Taratuto AL (2003) Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst 19:232–243. doi:10.1007/s00381-002-0700-2

    PubMed  Google Scholar 

  100. Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G, Dinopoulos A, Thomas G, Crone KR (2006) Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59:490–498. doi:10.1002/ana.20784

    CAS  PubMed  Google Scholar 

  101. Mandonnet E, Pallud J, Clatz O, Taillandier L, Konukoglu E, Duffau H, Capelle L (2008) Computational modeling of the WHO grade II glioma dynamics: principles and applications to management paradigm. Neurosurg Rev 31:263–269. doi:10.1007/s10143-008-0128-6

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ana Martín from HealthCo S. L. (Madrid, Spain) for editing assistance in the preparation of the first draft of this manuscript. The scientific meetings along with medical writing services were supported financially by Novartis S. A. of Spain. Novartis S. A. of Spain was given the opportunity to comment on the first draft of the manuscript, but all the decisions about its content were taken by the authors

Conflict of interest

The authors declare that they do not have any conflict of interest that may inappropriately influence this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luz Ruiz-Falcó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovira, À., Ruiz-Falcó, M.L., García-Esparza, E. et al. Recommendations for the radiological diagnosis and follow-up of neuropathological abnormalities associated with tuberous sclerosis complex. J Neurooncol 118, 205–223 (2014). https://doi.org/10.1007/s11060-014-1429-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1429-y

Keywords

Navigation