Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

This article was retracted on 24 July 2013

Abstract

Purpose The purpose of our study was to determine the statistical significance of thresholds of relative cerebral blood volume (rCBV), apparent diffusion coefficient (ADC) and ADC ratios in grading cerebral gliomas. Materials and methods In this retrospective study, 51 patients with histopathologically confirmed primary cerebral gliomas who had undergone conventional MR imaging, dynamic contrast-enhanced T2*-weighted perfusion MR imaging and diffusion MR imaging were included. A retrospective blinded analysis of the imaging findings including the perfusion and diffusion parameters was done. The rCBV measurements were obtained from regions of maximum perfusion. Minimum ADC values were obtained from the region of maximum hypointensity within the tumor and from the corresponding opposite white matter. Tumor grade determined with the two methods were then compared with the histopathologic grade. Mann–Whitney tests were performed to compare the DWI and PWI between tumor types. Receiver operating characteristic analyses were performed to determine optimum thresholds for tumor grading and also to calculate the sensitivity, specificity, PPV, and NPV for identifying high-grade gliomas. Results Statistical analysis demonstrated a threshold value of 2.91 for rCBV to provide sensitivity, specificity, PPV, and NPV of 94.7, 93.75, 90.0, and 96.8%, respectively, in determining high-grade gliomas. An ADC value of 98.50 mm2/s was defined as a threshold below which tumors were classified as high-grade gliomas and a sensitivity, specificity, PPV, and NPV of 90, 87.1, 81.81 and 93.10% respectively, were obtained. Significant differences were noted in the rCBV ratios, ADC and ADC ratios between low- and high-grade gliomas (P < 0.0001). Conclusion Combining PWI and DWI with conventional MR imaging increases the accuracy of pre-operative imaging grading of glial neoplasms. The rCBV measurements had the most superior diagnostic performance in predicting glioma grade. Absolute ADC values or ADC ratios were also helpful in preoperative grading of gliomas. Threshold values can be used in a clinical setting to evaluate tumors preoperatively for histologic grade and provide a means for guiding treatment and predicting postoperative patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas: a simple and reproducible method. Cancer 62:2152–2165. doi:10.1002/1097-0142(19881115)62:10<2152::AID-CNCR2820621015>3.0.CO;2-T

    Article  PubMed  CAS  Google Scholar 

  2. Law M, Yang S, Babb JS, Edmond A et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 25:746–755

    PubMed  Google Scholar 

  3. Rees J (2003) Advances in magnetic resonance imaging of brain tumours. Curr Opin Neurol 16:643–650. doi:10.1097/00019052-200312000-00001

    Article  PubMed  Google Scholar 

  4. Christoforidis GA, Grecula JC, Newton HB et al (2002) Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. Am J Neuroradiol 23:1553–1556

    PubMed  Google Scholar 

  5. Brant-Zawadzki M, Berry I, Osaki L et al (1986) Gd-DTPA in clinical MR of the brain: I. Intraaxial lesions. Am J Roentgenol 147:1223–1230

    Article  CAS  Google Scholar 

  6. Brant-Zawadzki M, Badami JP, Mills CM et al (1984) Primary intracranial tumor imaging: a comparison of magnetic resonance and CT. Radiology 150:435–440

    PubMed  CAS  Google Scholar 

  7. Bydder GM, Steiner RE, Young IR et al (1982) Clinical NMR imaging of the brain: 140 cases. Am J Roentgenol 139:215–236

    Article  CAS  Google Scholar 

  8. Just M, Thelen M (1988) Tissue characterization with T1, T2, and proton density values: results in 160 patients with brain tumors. Radiology 169:779–785

    PubMed  CAS  Google Scholar 

  9. Felix R, Schorner W, Laniado M et al (1985) Brain tumors MR imaging with gadolinium-DTPA. Radiology 156:681–688

    PubMed  CAS  Google Scholar 

  10. Moller-Hartmann W, Herminghaus S, Krings T et al (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381. doi:10.1007/s00234-001-0760-0

    Article  PubMed  CAS  Google Scholar 

  11. Dean BL, Drayer BP, Bird CR et al (1990) Gliomas classification with MR imaging. Radiology 174:411–415

    PubMed  CAS  Google Scholar 

  12. Watanabe M, Tanaka R, Takeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469. doi:10.1007/BF00598951

    Article  PubMed  CAS  Google Scholar 

  13. Kondziolka D, Lunsford LD, Martinez AJ (1993) Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg 79:533–536

    Article  PubMed  CAS  Google Scholar 

  14. Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    PubMed  CAS  Google Scholar 

  15. Kurki T, Lundbom N, Kalimo H, Valtonen S (1995) MR classification of brain gliomas: value of magnetization transfer and conventional imaging. Magn Reson Imaging 13:501–511. doi:10.1016/0730-725X(95)00006-3

    Article  PubMed  CAS  Google Scholar 

  16. Mihara F, Numaguchi Y, Rothman M, Kristt D, Fiandaca M, Swallow L (1995) Non-enhancing supratentorial malignant astrocytomas: MR features and possible mechanisms. Radiat Med 13:11–17

    PubMed  CAS  Google Scholar 

  17. Scott JN, Brasher PM, Sevick RJ, Rewcastle NB, Forsyth PA (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949

    Article  PubMed  CAS  Google Scholar 

  18. Burger PC, Vogel FS, Green SB et al (1985) Glioblastoma multiforme and anaplastic astrocytoma: pathologic criteria and prognostic implications. Cancer 56:1106–1111. doi:10.1002/1097-0142(19850901)56:5<1106::AID-CNCR2820560525>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  19. Burger P (1986) Malignant astrocytic neoplasms: classification, pathology, anatomy, and response to therapy. Semin Oncol 13:16–20

    PubMed  CAS  Google Scholar 

  20. Petrella JR, Provenzale JM (2000) MR perfusion imaging of the brain: techniques and applications. Am J Roentgenol 175:207–219

    Article  CAS  Google Scholar 

  21. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    PubMed  CAS  Google Scholar 

  22. Bruening R, Kwong KK, Vevea MJ et al (1996) Echo-planar MR determination of relative cerebral blood volume in human brain tumors: T1 versus T2 weighting. Am J Neuroradiol 17:831–840

    PubMed  CAS  Google Scholar 

  23. Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Roentgenol 171:1479–1486

    Article  CAS  Google Scholar 

  24. Sugahara T, Korogi Y, Shigematsu Y et al (1999) Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. Top Magn Reson Imaging 10:114–124. doi:10.1097/00002142-199904000-00004

    Article  PubMed  CAS  Google Scholar 

  25. Wong ET, Jackson EF, Hess KR et al (1998) Correlation between dynamic MRI and outcome in patients with malignant gliomas. Neurology 50:777–781

    Article  PubMed  CAS  Google Scholar 

  26. Wong JC, Provenzale JM, Petrella JR (2000) Perfusion MR imaging of brain neoplasms. Am J Roentgenol 174:1147–1157

    Article  CAS  Google Scholar 

  27. Cha S, Knopp EA, Johnson G et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29. doi:10.1148/radiol.2231010594

    Article  PubMed  Google Scholar 

  28. Lev MH, Rosen BR (1999) Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin N Am 9:309–331

    PubMed  CAS  Google Scholar 

  29. Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol 179:783–789

    Article  Google Scholar 

  30. Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1457–1466

    PubMed  CAS  Google Scholar 

  31. Krabbe K, Gideon P, Wagn P, Hansen U, Thomsen C, Madsen F (1997) MR diffusion imaging of human intracranial tumours. Neuroradiology 39:483–489. doi:10.1007/s002340050450

    Article  PubMed  CAS  Google Scholar 

  32. Filippi CG, Edgar MA, Ulug AM, Prowda JC, Heier LA, Zimmerman RD (2001) Appearance of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings. Am J Neuroradiol 22:65–72

    PubMed  CAS  Google Scholar 

  33. Stadnik TW, Chaskis C, Michotte A et al (2001) Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. Am J Neuroradiol 22:969–976

    PubMed  CAS  Google Scholar 

  34. Eis M, Els T, Hoehn-Berlage M, Hossmann KA (1994) Quantitative diffusion MR imaging of cerebral tumor and edema. Acta Neurochir Suppl (Wien) 60:344–346

    CAS  Google Scholar 

  35. Eis M, Els T, Hoehn-Berlage M (1995) High resolution quantitative relaxation and diffusion MRI on three different experimental brain tumors in rat. Magn Reson Med 34:835–844. doi:10.1002/mrm.1910340608

    Article  PubMed  CAS  Google Scholar 

  36. Els T, Eis M, Hoehn-Berlage M, Hossmann KA (1995) Diffusion-weighted MR imaging of experimental brain tumors in rats. MAGMA 3:13–20. doi:10.1007/BF02426396

    Article  PubMed  CAS  Google Scholar 

  37. Gupta RK, Sinha U, Cloughesy TF, Alger JR (1999) Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med 41:2–7. doi:10.1002/(SICI)1522-2594(199901)41:1<2::AID-MRM2>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  38. Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60. doi:10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  39. Gupta RK, Cloughesy TF, Sinha U et al (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 50:215–226. doi:10.1023/A:1006431120031

    Article  PubMed  CAS  Google Scholar 

  40. Castillo M, Smith JK, Kwock L, Wilber K (2001) Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. Am J Neuroradiol 22:60–64

    PubMed  CAS  Google Scholar 

  41. Gauvain KM, McKinstry RC, Mukherjee P et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 177:449–454

    Article  PubMed  CAS  Google Scholar 

  42. Nonomura Y, Yasumoto M, Yoshimura R et al (2001) Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 13:757–760. doi:10.1002/jmri.1105

    Article  PubMed  CAS  Google Scholar 

  43. Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. Am J Neuroradiol 22:1081–1088

    PubMed  CAS  Google Scholar 

  44. Guo AC, Cummings TJ, Dash RC, Provenzale JM (2002) Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 224:177–183. doi:10.1148/radiol.2241010637

    Article  PubMed  Google Scholar 

  45. Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J (1994) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. Am J Roentgenol 162:671–677

    Article  CAS  Google Scholar 

  46. Fan G, Zang P, Jing F, Wu Z, Guo Q (2005) Usefulness of diffusion/perfusion-weighted MRI in rat gliomas: correlation with histopathology. Acad Radiol 12:640–651. doi:10.1016/j.acra.2005.01.024

    Article  PubMed  Google Scholar 

  47. Fan G, Deng QL, Wu ZH et al (2006) Usefulness of diffusion/perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas: a valuable tool to predict tumour grading? Br J Radiol 79:652–658. doi:10.1259/bjr/25349497

    Article  PubMed  CAS  Google Scholar 

  48. Catalaa I, Henry R, Dillon WP, Graves EE et al (2006) Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas. NMR Biomed 19(4):463–475. doi:10.1002/nbm.1059

    Article  PubMed  CAS  Google Scholar 

  49. Ringertz J (1950) Grading of gliomas. Acta Pathol Microbiol Scand 27:51–64

    Article  PubMed  CAS  Google Scholar 

  50. Batra A, Tripathi RP, Singh AK (2004) Perfusion magnetic resonance imaging and magnetic resonance spectroscopy of cerebral gliomas showing imperceptible contrast enhancement on conventional magnetic resonance imaging. Australas Radiol 48:324–332. doi:10.1111/j.0004-8461.2004.01315.x

    Article  PubMed  CAS  Google Scholar 

  51. Maia AC Jr, Malheiros SM, da Rocha AJ et al (2005) MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. Am J Neuroradiol 26:777–783

    PubMed  Google Scholar 

  52. Peters AM (1998) Fundamentals of tracer kinetics for radiologists. Br J Radiol 71:1116–1129

    PubMed  CAS  Google Scholar 

  53. Guyton AC (1991) Cerebral blood flow, the cerebrospinal fluid, and brain metabolism. Basic neuroscience: anatomy and physiology, 2nd edn. Saunders, Philadelphia, pp 285–287

    Google Scholar 

  54. Roberts HC, Roberts TP, Brasch RC, Dillon WP (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. Am J Neuroradiol 21:891–899

    PubMed  CAS  Google Scholar 

  55. Law M, Yang S et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  56. Lev MH, Ozsunar Y, Henson JW et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. Am J Neuroradiol 25:214–221. Corrected, published erratum appears in Am J Neuroradiol 2004;25:B1

  57. Bulakbasi N, Kocaoglu M, Örs F (2003) Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. Am J Neuroradiol 24:225–233

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kesavadas.

Additional information

This article, published in Volume 94, Issue 1, pages 87-96, DOI 10.1007/s11060-009-9807-6, has been retracted, as it contains portions of other authors' writings on the same topic in other publications, without sufficient attribution to these earlier works being given. The principal authors of the paper acknowledged that text from background sources was mistakenly used without proper reference to the original source.

A retraction note to this article is available at http://dx.doi.org/10.1007/s11060-013-1205-4.

An erratum to this article is available at http://dx.doi.org/10.1007/s11060-013-1205-4.

About this article

Cite this article

Arvinda, H.R., Kesavadas, C., Sarma, P.S. et al. RETRACTED ARTICLE: Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 94, 87–96 (2009). https://doi.org/10.1007/s11060-009-9807-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9807-6

Keywords

Navigation