Skip to main content
Log in

Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM)

  • Nanoparticles and Occupational Health
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticle Surface Area Monitor (NSAM, TSI model 3550 and Aerotrak 9000) is an instrument designed to measure airborne surface area concentrations that would deposit in the alveolar or tracheobronchial region of the lung. It was found that the instrument can only be reliably used for the size range of nanoparticles between 20 and 100 nm. The upper size range can be extended to 400 nm, where the minimum in the deposition curves occurs. While the fraction below 20 nm usually contributes only negligibly to the total surface area and is therefore not critical, a preseparator is needed to remove all particles above 400 nm in cases where the size distribution extends into the larger size range. Besides limitations in the particle size range, potential implications of extreme concentrations up to the coagulation limit, particle material (density and composition) and particle morphology are discussed. While concentration does not seem to pose any major constraints, the effect of different agglomerate shapes still has to be further investigated. Particle material has a noticeable impact neither on particle charging in NSAM nor on the deposition curves within the aforementioned size range, but particle hygroscopicity can cause the lung deposition curves to change significantly which currently cannot be mimicked with the instrument. Besides limitations, possible extensions are also discussed. It was found that the tendencies of the particle deposition curves of a reference worker for alveolar, tracheobronchial, total and nasal depositions share the same tendencies in the 20–400 nm size range and that their ratios are almost constant. This also seems to be the case for different individuals and under different breathing conditions. By means of appropriate calibration factors NSAM can be used to deliver the lung deposited surface area concentrations in all these regions, based on a single measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi:10.1021/ja01269a023

    Article  ADS  CAS  Google Scholar 

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME et al (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759. doi:10.1056/NEJM199312093292401

    Google Scholar 

  • Donaldson K, Li XY, MacNee W (1998) Ultrafine (nanometer) particle mediated lung injury. J Aerosol Sci 29:553–560. doi:10.1016/S0021-8502(97)00464-3

    Article  CAS  Google Scholar 

  • Fissan H, Neumann S, Trampe A, Pui DYH, Shin WG (2007) Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J Nanopart Res 9:53–59. doi:10.1007/s11051-006-9156-8

    Article  Google Scholar 

  • Fuchs NA (1963) On the stationary charge distribution on aerosol particles in bipolar ionic atmosphere. Geofis Pura Appl 56:185–193

    Article  ADS  Google Scholar 

  • Gäggeler HW, Baltensperger U, Emmenegger M (1989) The epiphaniometer, a new device for continuous aerosol monitoring. J Aerosol Sci 20:557–564. doi:10.1016/0021-8502(89)90101-8

    Article  Google Scholar 

  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H et al (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 65:1513–1530. doi:10.1080/00984100290071649

    Article  CAS  Google Scholar 

  • Lall AA, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I. Theoretical analysis. J Aerosol Sci 37:260. doi:10.1016/j.jaerosci.2005.05.021

    Article  CAS  Google Scholar 

  • Löndahl J, Pagels J, Swietlicki E, Zhou J, Ketzel M, Massling A et al (2006) A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans. J Aerosol Sci 37:1152–1163. doi:10.1016/j.jaerosci.2005.11.004

    Article  Google Scholar 

  • Löndahl J, Massling A, Pagels J, Swietlicki E, Vaclavik E, Loft S (2007) Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhal Toxicol 19:109–116. doi:10.1080/08958370601051677

    Google Scholar 

  • Morawska L, Hofmann W, Hitchins-Loveday J, Swanson C, Mengersen K (2005) Experimental study of the deposition of combustion aerosols in the human respiratory tract. J Aerosol Sci 36:939–957. doi:10.1016/j.jaerosci.2005.03.015

    Article  CAS  Google Scholar 

  • Oberdörster G (1996) Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Part Sci Technol 14:135–151. doi:10.1080/02726359608906690

    Article  Google Scholar 

  • Oberdörster G (2000) Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc Lond A 358:2719–2740. doi:10.1098/rsta.2000.0680

    Article  ADS  Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    PubMed  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445. doi:10.1080/08958370490439597

    Google Scholar 

  • Shin WG, Pui DYH, Fissan H, Neumann S, Trampe A (2007) Calibration and numerical simulation of nanoparticle surface area monitor (TSI model 3550 NSAM). J Nanopart Res 9:61–69. doi:10.1007/s11051-006-9153-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Nick Stanley of University of Minnesota for providing SMPS data for DOS particles and Joakim Pagels of Lund University for giving us the opportunity of testing the NSAM during actual welding work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Asbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asbach, C., Fissan, H., Stahlmecke, B. et al. Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM). J Nanopart Res 11, 101–109 (2009). https://doi.org/10.1007/s11051-008-9479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9479-8

Keywords

Navigation