Skip to main content

Advertisement

Log in

Invasive Aspergillosis: Resistance to Antifungal Drugs

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Although the arsenal of agents with anti-Aspergillus activity has expanded over the last decade, mortality due to invasive aspergillosis remains unacceptably high. Resistance of the Aspergillus spp. species to antifungal drugs increased in the last 20 years with the increase in antifungal drugs use and might partially account for treatment failures. Recent advances in our understanding of mechanisms of antifungal drug action in Aspergillus, along with the standardization of in vitro susceptibility testing methods, have brought resistance testing to the forefront of clinical mycology. Recent modifications in taxonomy and understanding of the acquired resistance mechanisms of Aspergilli to drugs should support a better management of Aspergillus infections. In this paper, we review the current knowledge on epidemiology and underlying mechanisms involved in antifungal resistance in Aspergillus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kontoyiannis DP, Bodey GP. Invasive aspergillosis in 2002: an update. Eur J Clin Microbiol Infect Dis. 2002;21:161–72.

    Article  PubMed  CAS  Google Scholar 

  2. Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347:408–15.

    Article  PubMed  CAS  Google Scholar 

  3. Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol. 2003;11:272–9.

    Article  PubMed  CAS  Google Scholar 

  4. Groll AH, Silling G, Young C, et al. Randomized comparison of safety and pharmacokinetics of caspofungin, liposomal amphotericin B, and the combination of both in allogeneic hematopoietic stem cell recipients. Antimicrob Agents Chemother. 2010;54:4143–9.

    Article  PubMed  CAS  Google Scholar 

  5. Marr KA, Carter RA, Crippa F, Wald A, Corey L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2002;34:909–17.

    Article  PubMed  Google Scholar 

  6. Sutton DA, Sanche SE, Revankar SG, Fothergill AW, Rinaldi MG. In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J Clin Microbiol. 1999;37:2343–5.

    PubMed  CAS  Google Scholar 

  7. Lass-Florl C, Rief A, Leitner S, Speth C, Wurzner R, Dierich MP. In vitro activities of amphotericin B and voriconazole against aleurioconidia from Aspergillus terreus. Antimicrob Agents Chemother. 2005;49:2539–40.

    Article  PubMed  Google Scholar 

  8. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus section Fumigati: antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother. 2008;52:1244–51.

    Article  PubMed  CAS  Google Scholar 

  9. Pfaller MA, Messer SA, Boyken L, et al. In vitro survey of triazole cross-resistance among more than 700 clinical isolates of Aspergillus species. J Clin Microbiol. 2008;46:2568–72.

    Article  PubMed  CAS  Google Scholar 

  10. Guinea J, Bouza E. Isavuconazole: a new and promising antifungal triazole for the treatment of invasive fungal infections. Future Microbiol. 2008;3:603–15.

    Article  PubMed  CAS  Google Scholar 

  11. Guinea J, Pelaez T, Recio S, Torres-Narbona M, Bouza E. In vitro antifungal activities of isavuconazole (BAL4815), voriconazole, and fluconazole against 1,007 isolates of zygomycete, Candida, Aspergillus, Fusarium, and Scedosporium species. Antimicrob Agents Chemother. 2008;52:1396–400.

    Article  PubMed  CAS  Google Scholar 

  12. Howard SJ, Cerar D, Anderson MJ, et al. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009;15:1068–76.

    Article  PubMed  CAS  Google Scholar 

  13. Snelders E, Huis In’t Veld RA, Rijs AJ, Kema GH, Melchers WJ, Verweij PE. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol. 2009;75:4053–7.

    Article  PubMed  CAS  Google Scholar 

  14. Verweij PE, Snelders E, Kema GH, Mellado E, Melchers WJ. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis. 2009;9:789–95.

    Article  PubMed  CAS  Google Scholar 

  15. Arendrup MC, Garcia-Effron G, Buzina W, et al. Breakthrough Aspergillus fumigatus and Candida albicans double infection during caspofungin treatment: laboratory characteristics and implication for susceptibility testing. Antimicrob Agents Chemother. 2009;53:1185–93.

    Article  PubMed  CAS  Google Scholar 

  16. Andes D. Clinical utility of antifungal pharmacokinetics and pharmacodynamics. Curr Opin Infect Dis. 2004;17:533–40.

    Article  PubMed  CAS  Google Scholar 

  17. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46:201–11.

    Article  PubMed  CAS  Google Scholar 

  18. Segal BH, Herbrecht R, Stevens DA, et al. Defining responses to therapy and study outcomes in clinical trials of invasive fungal diseases: Mycoses Study Group and European Organization for Research and Treatment of Cancer consensus criteria. Clin Infect Dis. 2008;47:674–83.

    Article  PubMed  Google Scholar 

  19. Boutboul F, Alberti C, Leblanc T, et al. Invasive aspergillosis in allogeneic stem cell transplant recipients: increasing antigenemia is associated with progressive disease. Clin Infect Dis. 2002;34:939–43.

    Article  PubMed  Google Scholar 

  20. Maertens J, Vrebos M, Boogaerts M. Assessing risk factors for systemic fungal infections. Eur J Cancer Care. 2001;10:56–62.

    Article  CAS  Google Scholar 

  21. Khayyata S, Soubani AO, Bonnett M, Nassar H, Abidi MH, Al-Abbadi MA. The major autopsy findings in adult patients after hematopoietic stem cell transplantation. Ann Transpl. 2007;12:11–8.

    Google Scholar 

  22. Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibility of clinical isolates of Aspergillus spp. to anidulafungin, caspofungin, and micafungin: a head-to-head comparison using the CLSI M38–A2 broth microdilution method. J Clin Microbiol. 2009;47:3323–5.

    Article  PubMed  CAS  Google Scholar 

  23. Espinel-Ingroff A, Diekema DJ, Fothergill A, et al. Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38–A2 document). J Clin Microbiol. 2010;48:3251–7.

    Article  PubMed  CAS  Google Scholar 

  24. Araujo R, Espinel-Ingroff A. Comparison of assessment of oxygen consumption, Etest, and CLSI M38–A2 broth microdilution methods for evaluation of the susceptibility of Aspergillus fumigatus to posaconazole. Antimicrob Agents Chemother. 2009;53:4921–3.

    Article  PubMed  CAS  Google Scholar 

  25. Buchta V, Vejsova M, Vale-Silva LA. Comparison of disk diffusion test and Etest for voriconazole and fluconazole susceptibility testing. Folia Microbiol. 2008;53:153–60.

    CAS  Google Scholar 

  26. CLSI. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved standard-second edition. Document M38-A2. 2008.

  27. Qiao J, Liu W, Li R. Antifungal resistance mechanisms of Aspergillus. Jpn J Med Mycol. 2008;49:157–63.

    Article  CAS  Google Scholar 

  28. Balajee SA, Imhof A, Gribskov JL, Marr KA. Determination of antifungal drug susceptibilities of Aspergillus species by a fluorescence-based microplate assay. J Antimicrob Chemother. 2005;55:102–5.

    Article  PubMed  CAS  Google Scholar 

  29. Lass-Florl C, Alastruey-Izquierdo A, Cuenca-Estrella M, Perkhofer S, Rodriguez-Tudela JL. In vitro activities of various antifungal drugs against Aspergillus terreus: Global assessment using the methodology of the European committee on antimicrobial susceptibility testing. Antimicrob Agents Chemother. 2009;53:794–5.

    Article  PubMed  Google Scholar 

  30. Lass-Florl C, Mayr A, Perkhofer S, et al. Activities of antifungal agents against yeasts and filamentous fungi: assessment according to the methodology of the European Committee on Antimicrobial Susceptibility Testing. Antimicrob Agents Chemother. 2008;52:3637–41.

    Article  PubMed  Google Scholar 

  31. Lass-Florl C, Perkhofer S. In vitro susceptibility-testing in Aspergillus species. Mycoses. 2008;51:437–46.

    Article  PubMed  Google Scholar 

  32. Denning DW, Venkateswarlu K, Oakley KL, et al. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 1997;41:1364–8.

    PubMed  CAS  Google Scholar 

  33. Denning DW, Radford SA, Oakley KL, Hall L, Johnson EM, Warnock DW. Correlation between in vitro susceptibility testing to itraconazole and in vivo outcome of Aspergillus fumigatus infection. J Antimicrob Chemother. 1997;40:401–14.

    Article  PubMed  CAS  Google Scholar 

  34. Rodriquez Tudela JL, Donnelly JP, Arendrup MC, et al. EUCAST technical note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin Microbiol Infect 2008;14:982–984.

    Google Scholar 

  35. Pfaller JB, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. In vitro susceptibility testing of Aspergillus spp.: comparison of Etest and reference microdilution methods for determining voriconazole and itraconazole MICs. J Clin Microbiol. 2003;41:1126–9.

    Article  PubMed  CAS  Google Scholar 

  36. Pfaller MA, Messer SA, Boyken L, Hollis RJ, Diekema DJ. In vitro susceptibility testing of filamentous fungi: comparison of Etest and reference M38-A microdilution methods for determining posaconazole MICs. Diagn Microbiol Infect Dis. 2003;45:241–4.

    Article  PubMed  CAS  Google Scholar 

  37. Meletiadis J, Mouton JW, Meis JF, Bouman BA, Verweij PE. Comparison of the Etest and the sensititre colorimetric methods with the NCCLS proposed standard for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol. 2002;40:2876–85.

    Article  PubMed  CAS  Google Scholar 

  38. Verweij PE, Howard SJ, Melchers WJ, Denning DW. Azole-resistance in Aspergillus: proposed nomenclature and breakpoints. Drug Resist Updat. 2009;12:141–7.

    Article  PubMed  CAS  Google Scholar 

  39. Lass-Florl C. In vitro susceptibility testing in Aspergillus species: an update. Future Microbiol. 2010;5:789–99.

    Article  PubMed  Google Scholar 

  40. Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell. 2005;4:625–32.

    Article  PubMed  CAS  Google Scholar 

  41. Balajee SA, Nickle D, Varga J, Marr KA. Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryot Cell. 2006;5:1705–12.

    Article  PubMed  CAS  Google Scholar 

  42. Yaguchi T, Horie Y, Tanaka R, Matsuzawa T, Ito J, Nishimura K. Molecular phylogenetics of multiple genes on Aspergillus section Fumigati isolated from clinical specimens in Japan. Jpn J Med Mycol. 2007;48:37–46.

    Article  CAS  Google Scholar 

  43. Krishnan S, Manavathu EK, Chandrasekar PH. Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses. 2009;52:206–22.

    Article  PubMed  CAS  Google Scholar 

  44. Hadrich I, Makni F, Sellami H, et al. Invasive aspergillosis: epidemiology and environmental study in haematology patients (Sfax, Tunisia). Mycoses. 2010;53:443–7.

    Article  PubMed  CAS  Google Scholar 

  45. Baddley JW, Marr KA, Andes DR, et al. Patterns of susceptibility of Aspergillus isolates recovered from patients enrolled in the Transplant-Associated Infection Surveillance Network. J Clin Microbiol. 2009;47:3271–5.

    Article  PubMed  CAS  Google Scholar 

  46. Balajee SA, Kano R, Baddley JW, et al. Molecular identification of Aspergillus species collected for the Transplant-Associated Infection Surveillance Network. J Clin Microbiol. 2009;47:3138–41.

    Article  PubMed  CAS  Google Scholar 

  47. Gomez-Lopez A, Garcia-Effron G, Mellado E, Monzon A, Rodriguez-Tudela JL, Cuenca-Estrella M. In vitro activities of three licensed antifungal agents against Spanish clinical isolates of Aspergillus spp. Antimicrob Agents Chemother. 2003;47:3085–8.

    Article  PubMed  CAS  Google Scholar 

  48. Lionakis MS, Lewis RE, Torres HA, Albert ND, Raad II, Kontoyiannis DP. Increased frequency of non-fumigatus Aspergillus species in amphotericin B- or triazole-pre-exposed cancer patients with positive cultures for aspergilli. Diagn Microb Infect Dis. 2005;52:15–20.

    Article  CAS  Google Scholar 

  49. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007;153:1677–92.

    Article  PubMed  CAS  Google Scholar 

  50. Koss T, Bagheri B, Zeana C, Romagnoli MF, Grossman ME. Amphotericin B-resistant Aspergillus flavus infection successfully treated with caspofungin, a novel antifungal agent. J Am Acad Dermatol. 2002;46:945–7.

    Article  PubMed  Google Scholar 

  51. Balajee SA, Lindsley MD, Iqbal N, Ito J, Pappas PG, Brandt ME. Nonsporulating clinical isolate identified as Petromyces alliaceus (anamorph Aspergillus alliaceus) by morphological and sequence-based methods. J Clin Microbiol. 2007;45:2701–3.

    Article  PubMed  CAS  Google Scholar 

  52. Blum G, Perkhofer S, Haas H, et al. Potential basis for amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother. 2008;52:1553–5.

    Article  PubMed  CAS  Google Scholar 

  53. Morace G, Drago M, Scaltrito MM, Conti S, Fanti F, Polonelli L. In vitro activity (MIC and MFC) of voriconazole, amphotericin B, and itraconazole against 192 filamentous fungi: the GISIA-2 study. J Chemother. 2007;19:508–13.

    PubMed  CAS  Google Scholar 

  54. Walsh TJ, Petraitis V, Petraitiene R, et al. Experimental pulmonary aspergillosis due to Aspergillus terreus: pathogenesis and treatment of an emerging fungal pathogen resistant to amphotericin B. J Infect Dis. 2003;188:305–19.

    Article  PubMed  CAS  Google Scholar 

  55. Deak E, Wilson SD, White E, Carr JH, Balajee SA. Aspergillus terreus accessory conidia are unique in surface architecture, cell wall composition and germination kinetics. PLoS One. 2009;4:e7673.

    Article  PubMed  Google Scholar 

  56. Auberger J, Lass-Florl C, Clausen J, et al. First case of breakthrough pulmonary Aspergillus niveus infection in a patient after allogeneic hematopoietic stem cell transplantation. Diagn Microbiol Infect Dis. 2008;62:336–9.

    Article  PubMed  Google Scholar 

  57. Balajee SA, Baddley JW, Peterson SW, et al. Aspergillus alabamensis, a new clinically relevant species in the section Terrei. Eukaryot Cell. 2009;8:713–22.

    Article  PubMed  CAS  Google Scholar 

  58. Person AK, Chudgar SM, Norton BL, Tong BC, Stout JE. Aspergillus niger: an unusual cause of invasive pulmonary aspergillosis. J Med Microbiol. 2010;59:834–8.

    Article  PubMed  CAS  Google Scholar 

  59. Kaya AD, Kiraz N. In vitro susceptibilities of Aspergillus spp. causing otomycosis to amphotericin B, voriconazole and itraconazole. Mycoses. 2007;50:447–50.

    Article  PubMed  CAS  Google Scholar 

  60. Howard SJ, Harrison E, Bowyer P, Varga J, Denning DW. Cryptic species and azole resistance in the Aspergillus niger complex. Antimicrob Agents Chemother. 2011;55:4802–9.

    Article  PubMed  CAS  Google Scholar 

  61. Segal BH, DeCarlo ES, Kwon-Chung KJ, Malech HL, Gallin JI, Holland SM. Aspergillus nidulans infection in chronic granulomatous disease. Medicine. 1998;77:345–54.

    Article  PubMed  CAS  Google Scholar 

  62. Kontoyiannis DP, Lewis RE, May GS, Osherov N, Rinaldi MG. Aspergillus nidulans is frequently resistant to amphotericin B. Mycoses. 2002;45:406–7.

    Article  PubMed  CAS  Google Scholar 

  63. Dannaoui E, Persat F, Monier MF, Borel E, Piens MA, Picot S. In vitro susceptibility of Aspergillus spp. isolates to amphotericin B and itraconazole. J Antimicrob Chemother. 1999;44:553–5.

    Article  PubMed  CAS  Google Scholar 

  64. Verweij PE, Varga J, Houbraken J, et al. Emericella quadrilineata as cause of invasive aspergillosis. Emerg Infect Dis. 2008;14:566–72.

    Article  PubMed  CAS  Google Scholar 

  65. Morgan J, Wannemuehler KA, Marr KA, et al. Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: interim results of a prospective multicenter surveillance program. Med Mycol. 2005;43:S49–58.

    Article  PubMed  Google Scholar 

  66. Pavie J, Lacroix C, Hermoso DG, et al. Breakthrough disseminated Aspergillus ustus infection in allogeneic hematopoietic stem cell transplant recipients receiving voriconazole or caspofungin prophylaxis. J Clin Microbiol. 2005;43:4902–4.

    Article  PubMed  Google Scholar 

  67. Houbraken J, Due M, Varga J, Meijer M, Frisvad JC, Samson RA. Polyphasic taxonomy of Aspergillus section Usti. Stud Mycol. 2007;59:107–28.

    Article  PubMed  CAS  Google Scholar 

  68. Varga J, Houbraken J, Van Der Lee HA, Verweij PE, Samson RA. Aspergillus calidoustus sp. nov., causative agent of human infections previously assigned to Aspergillus ustus. Eukaryot Cell. 2008;7:630–8.

    Article  PubMed  CAS  Google Scholar 

  69. Verweij PE, van den Bergh MF, Rath PM, de Pauw BE, Voss A, Meis JF. Invasive aspergillosis caused by Aspergillus ustus: case report and review. J Clin Microbiol. 1999;37:1606–9.

    PubMed  CAS  Google Scholar 

  70. Alanio A, Sitterle E, Liance M, et al. Low prevalence of resistance to azoles in Aspergillus fumigatus in a French cohort of patients treated for haematological malignancies. J Antimicrob Chemother. 2011;66:371–4.

    Article  PubMed  CAS  Google Scholar 

  71. Araujo R, Pina-Vaz C, Rodrigues AG. Susceptibility of environmental versus clinical strains of pathogenic Aspergillus. Int J Antimicrob Agents. 2007;29:108–11.

    Article  PubMed  CAS  Google Scholar 

  72. Snelders E, van der Lee HA, Kuijpers J, et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 2008;5:e219.

    Article  PubMed  Google Scholar 

  73. Guinea J, Recio S, Pelaez T, Torres-Narbona M, Bouza E. Clinical isolates of Aspergillus species remain fully susceptible to voriconazole in the post-voriconazole era. Antimicrob Agents Chemother. 2008;52:3444–6.

    Article  PubMed  CAS  Google Scholar 

  74. Diaz-Guerra TM, Mellado E, Cuenca-Estrella M, Rodriguez-Tudela JL. A point mutation in the 14alpha-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 2003;47:1120–4.

    Article  PubMed  CAS  Google Scholar 

  75. Mellado E, Garcia-Effron G, Alcazar-Fuoli L, et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother. 2007;51:1897–904.

    Article  PubMed  CAS  Google Scholar 

  76. da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother. 2004;48:4405–13.

    Article  PubMed  Google Scholar 

  77. Escribano P, Recio S, Pelaez T, Bouza E, Guinea J. Aspergillus fumigatus strains with mutations in the cyp51A gene do not always show phenotypic resistance to itraconazole, voriconazole, or posaconazole. Antimicrob Agents Chemother. 2011;55:2460–2.

    Article  PubMed  CAS  Google Scholar 

  78. Bellete B, Raberin H, Morel J, Flori P, Hafid J, Manhsung RT. Acquired resistance to voriconazole and itraconazole in a patient with pulmonary aspergilloma. Med Mycol. 2010;48:197–200.

    Article  PubMed  CAS  Google Scholar 

  79. Thors VS, Bierings MB, Melchers WJ, Verweij PE, Wolfs TF. Pulmonary aspergillosis caused by a pan-azole-resistant Aspergillus fumigatus in a 10-year-old boy. Pediatr Infect Dis J. 2011;30:268–70.

    Article  PubMed  Google Scholar 

  80. Pfaller M, Boyken L, Hollis R, et al. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Aspergillus species to the triazoles. J Clin Microbiol. 2011;49:586–90.

    Article  PubMed  CAS  Google Scholar 

  81. Verweij PE, Mellado E, Melchers WJ. Multiple-triazole-resistant aspergillosis. New Engl J Med. 2007;356:1481–3.

    Article  PubMed  CAS  Google Scholar 

  82. Gollapudy R, Ajmani S, Kulkarni SA. Modeling and interactions of Aspergillus fumigatus lanosterol 14-alpha demethylase ‘A’ with azole antifungals. Bioorgan Med Chem. 2004;12:2937–50.

    Article  CAS  Google Scholar 

  83. Snelders E, Karawajczyk A, Verhoeven RJ, et al. The structure-function relationship of the Aspergillus fumigatus cyp51A L98H conversion by site-directed mutagenesis: the mechanism of L98H azole resistance. Fungal Genet Biol. 2011;48:1062–70.

    Article  PubMed  CAS  Google Scholar 

  84. Xiao L, Madison V, Chau AS, Loebenberg D, Palermo RE, McNicholas PM. Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding. Antimicrob Agents Chemother. 2004;48:568–74.

    Article  PubMed  CAS  Google Scholar 

  85. Lockhart SR, Frade JP, Etienne KA, Pfaller MA, Diekema DJ, Balajee SA. Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother. 2011;55:4465–8.

    Article  PubMed  CAS  Google Scholar 

  86. Verweij PE, Camps SM, Kema GH, Melchers WJ. Comment on: Low prevalence of resistance to azoles in Aspergillus fumigatus in a French cohort of patients treated for haematological malignancies. J Antimicrob Chemother. 2011;66:954–5.

    Article  PubMed  CAS  Google Scholar 

  87. Masia Canuto M, Gutierrez Rodero F. Antifungal drug resistance to azoles and polyenes. Lancet Infect Dis. 2002;2:550–63.

    Article  PubMed  Google Scholar 

  88. Miyazaki Y, Geber A, Miyazaki H, et al. Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans. Gene. 1999;236:43–51.

    Article  PubMed  CAS  Google Scholar 

  89. Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett. 1997;400:80–2.

    Article  PubMed  CAS  Google Scholar 

  90. Walsh TJ, Anaissie EJ, Denning DW, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46:327–60.

    Article  PubMed  CAS  Google Scholar 

  91. Arendrup MC, Perkhofer S, Howard SJ, et al. Establishing in vitro-in vivo correlations for Aspergillus fumigatus: the challenge of azoles versus echinocandins. Antimicrob Agents Chemother. 2008;52:3504–11.

    Article  PubMed  CAS  Google Scholar 

  92. Madureira A, Bergeron A, Lacroix C, et al. Breakthrough invasive aspergillosis in allogeneic haematopoietic stem cell transplant recipients treated with caspofungin. Int J Antimicrob Agents. 2007;30:551–4.

    Article  PubMed  CAS  Google Scholar 

  93. Gardiner RE, Souteropoulos P, Park S, Perlin DS. Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Med Mycol. 2005;43:S299–305.

    Article  PubMed  CAS  Google Scholar 

  94. Eschertzhuber S, Velik-Salchner C, Hoermann C, Hoefer D, Lass-Florl C. Caspofungin-resistant Aspergillus flavus after heart transplantation and mechanical circulatory support: a case report. Transpl Infect Dis. 2008;10:190–2.

    Article  PubMed  CAS  Google Scholar 

  95. Liu W, May GS, Lionakis MS, Lewis RE, Kontoyiannis DP. Extra copies of the Aspergillus fumigatus squalene epoxidase gene confer resistance to terbinafine: genetic approach to studying gene dose-dependent resistance to antifungals in A. fumigatus. Antimicrob Agents Chemother. 2004;48:2490–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Minister of Higher Education and Scientific Research.

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ayadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadrich, I., Makni, F., Neji, S. et al. Invasive Aspergillosis: Resistance to Antifungal Drugs. Mycopathologia 174, 131–141 (2012). https://doi.org/10.1007/s11046-012-9526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-012-9526-y

Keywords

Navigation