Skip to main content

Advertisement

Log in

FLT3 expression and IL10 promoter polymorphism in acute myeloid leukemia with RUNX1-RUNX1T1

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We investigated the correlation between FLT3 expression and IL10 gene promoter polymorphism in acute myeloid leukemia with RUNX1-RUNX1T1 and their clinical significance. FLT3 mRNA expression was measured by real-time quantitative PCR (qPCR) and immunohistochemical staining (IHC) on bone marrow (BM) leukemic cells. IL10 gene promoter polymorphisms including rs1800896 (G-1082A), rs1800871 (C-819T), and rs1800872 (C-592T) were genotyped by direct sequencing. Among 45 enrolled patients, 32 (71.1 %) exhibited FLT3 overexpression, whose FLT3 mRNA level was higher than normal cut-off value (0.02). The IHC results also consisted with FLT3 mRNA expression data achieved by qPCR. The FLT3 mRNA level was significantly different among 3 IHC staining groups (P < 0.0001); 0.031 ± 0.041, 0.106 ± 0.097 and 0.588 ± 0.573 in IHC negative, intermediate and positive group, respectively. Interestingly, the FLT3 expression level was correlated with the percentage of BM CD34 positive cells (R = 0.360, P = 0.016). The elevated FLT3 expression at initial BM were decreased after remission and maintained lower than the cut-off level. FLT3 expression was not dependent on IL10 gene promoter polymorphisms. FLT3 overexpression itself did not demonstrate significant effects on overall survival (OS). However, it is notable that IL10 rs1800896 GA genotype tended to have a lower estimated mean OS (20.1 months) compared to GG genotype (54.6 months), but the statistical significance was not derived because of limited number of patients in this study (P = 0.072). Further studies including more type of leukemia and patients may be helpful to understand the relations between cytokine genotype and FLT3 expression and their prognostic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100(5):1532–1542. doi:10.1182/blood-2002-02-0492

    Article  CAS  PubMed  Google Scholar 

  2. Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3(9):650–665. doi:10.1038/nrc1169

    Article  CAS  PubMed  Google Scholar 

  3. Kindler T, Lipka DB, Fischer T (2010) FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 116(24):5089–5102. doi:10.1182/blood-2010-04-261867

    Article  CAS  PubMed  Google Scholar 

  4. Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M, Kodera Y, Miyawaki S, Kuriyama K, Shimazaki C, Akiyama H, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Ueda R, Ohno R, Emi N, Naoe T (2004) Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 103(5):1901–1908. doi:10.1182/blood-2003-06-1845

    Article  CAS  PubMed  Google Scholar 

  5. Silva FP, Lind A, Brouwer-Mandema G, Valk PJ, Giphart-Gassler M (2007) Trisomy 13 correlates with RUNX1 mutation and increased FLT3 expression in AML-M0 patients. Haematologica 92(8):1123–1126

    Article  CAS  PubMed  Google Scholar 

  6. Dicker F, Haferlach C, Kern W, Haferlach T, Schnittger S (2007) Trisomy 13 is strongly associated with AML1/RUNX1 mutations and increased FLT3 expression in acute myeloid leukemia. Blood 110(4):1308–1316. doi:10.1182/blood-2007-02-072595

    Article  CAS  PubMed  Google Scholar 

  7. Baldwin BR, Li L, Tse KF, Small S, Collector M, Whartenby KA, Sharkis SJ, Racke F, Huso D, Small D (2007) Transgenic mice expressing Tel-FLT3, a constitutively activated form of FLT3, develop myeloproliferative disease. Leukemia 21(4):764–771. doi:10.1038/sj.leu.2404532

    CAS  PubMed  Google Scholar 

  8. de Deus DM, de Souza PR, Muniz MT (2013) High FLT3 expression and IL10 (G1082A) polymorphism in poor overall survival in calla acute lymphoblastic leukemia. Mol Biol Rep 40(2):1609–1613. doi:10.1007/s11033-012-2209-4

    Article  CAS  PubMed  Google Scholar 

  9. Mangan JK, Speck NA (2011) RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit Rev Oncog 16(1–2):77–91

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zhang B, Ho YW, Huang Q, Maeda T, Lin A, Lee SU, Hair A, Holyoake TL, Huettner C, Bhatia R (2012) Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 21(4):577–592. doi:10.1016/j.ccr.2012.02.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Arber DA, Brunning RD, Le Beau MM, Falini B, Vardiman JW, Porwit A, Thiele J, Bloomfield CD (2008) Acute myeloid leukaemia with recurrent genetic abnormalities. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC, Lyon, pp 110–112

    Google Scholar 

  12. Kuchenbauer F, Kern W, Schoch C, Kohlmann A, Hiddemann W, Haferlach T, Schnittger S (2005) Detailed analysis of FLT3 expression levels in acute myeloid leukemia. Haematologica 90(12):1617–1625

    CAS  PubMed  Google Scholar 

  13. Vora HH, Shukla SN, Brahambhatt BV, Mehta SH, Patel NA, Parikh SK, Shah KN, Shah PM (2010) Clinical relevance of FLT3 receptor protein expression in Indian patients with acute leukemia. Asia-Pac J Clin oncol 6(4):306–319. doi:10.1111/j.1743-7563.2010.01322.x

    Article  PubMed  Google Scholar 

  14. Grunwald MR, Levis MJ (2013) FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int J Hematol 97(6):683–694. doi:10.1007/s12185-013-1334-8

    Article  CAS  PubMed  Google Scholar 

  15. Eklund C, Jahan F, Pessi T, Lehtimaki T, Hurme M (2003) Interleukin 1B gene polymorphism is associated with baseline C-reactive protein levels in healthy individuals. Eur Cytokine Netw 14(3):168–171

    CAS  PubMed  Google Scholar 

  16. Pociot F, Molvig J, Wogensen L, Worsaae H, Nerup J (1992) A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest 22(6):396–402

    Article  CAS  PubMed  Google Scholar 

  17. Zheng L, Yin J, Wang L, Wang X, Shi Y, Shao A, Tang W, Ding G, Liu C, Chen S, Gu H (2013) Interleukin 1B rs16944 G > A polymorphism was associated with a decreased risk of esophageal cancer in a Chinese population. Clin Biochem 46(15):1469–1473. doi:10.1016/j.clinbiochem.2013.05.050

    Article  CAS  PubMed  Google Scholar 

  18. Zhang B, Li M, McDonald T, Holyoake TL, Moon RT, Campana D, Shultz L, Bhatia R (2013) Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling. Blood 121(10):1824–1838. doi:10.1182/blood-2012-02-412890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yao C, Du W, Chen H, Xiao S, Wang C, Fan Z (2013) Association of IL-10 gene promoter polymorphisms with acute myeloid leukemia in human, China. Asian Pac J Cancer Prev 14(4):2439–2442. doi:10.7314/APJCP.2013.14.4.2439

    Article  PubMed  Google Scholar 

  20. Cao HY, Zou P, Zhou H (2013) Genetic association of interleukin-10 promoter polymorphisms and susceptibility to diffuse large B-cell lymphoma: a meta-analysis. Gene 519(2):288–294. doi:10.1016/j.gene.2013.01.066

    Article  CAS  PubMed  Google Scholar 

  21. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181. doi:10.1038/nri2711

    Article  CAS  PubMed  Google Scholar 

  22. Brooks DG, Ha SJ, Elsaesser H, Sharpe AH, Freeman GJ, Oldstone MB (2008) IL-10 and PD-L1 operate through distinct pathways to suppress T-cell activity during persistent viral infection. Proc Natl Acad Sci USA 105(51):20428–20433. doi:10.1073/pnas.0811139106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wang YC, Sung WW, Wang L, Cheng YW, Chen CY, Wu TC, Shieh SH, Lee H (2013) Different impact of IL10 haplotype on prognosis in lung squamous cell carcinoma and adenocarcinoma. Anticancer Res 33(6):2729–2735

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Korean Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (SN: A092258) and a grant (10172KFDA993) from the Korea Food & Drug Administration in 2012 (to M Kim).

Conflict of interests

The authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggoo Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Kim, J., Kim, J.R. et al. FLT3 expression and IL10 promoter polymorphism in acute myeloid leukemia with RUNX1-RUNX1T1 . Mol Biol Rep 42, 451–456 (2015). https://doi.org/10.1007/s11033-014-3786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3786-1

Keywords

Navigation