Skip to main content

Advertisement

Log in

Broadened T-cell Repertoire Diversity in ivIg-treated SLE Patients is Also Related to the Individual Status of Regulatory T-cells

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Intravenous IgG (ivIg) is a therapeutic alternative for lupus erythematosus, the mechanism of which remains to be fully understood. Here we investigated whether ivIg affects two established sub-phenotypes of SLE, namely relative oligoclonality of circulating T-cells and reduced activity of CD4 + Foxp3+ regulatory T-cells (Tregs) reflected by lower CD25 surface density.

Methods

We conducted a longitudinal study of 15 lupus patients (14 with SLE and one with discoid LE) treated with ivIg in cycles of 2–6 consecutive monthly infusions. Among these 15 patients, 10 responded to ivIg therapy with clear clinical improvement. We characterized Tregs and determined TCR spectratypes of four Vβ families with reported oligoclonality. Cell counts, cytometry and TCR spectratypes were obtained from peripheral blood at various time points before, during and after ivIg treatment. T-cell oligoclonality was assessed as Vβ-familywise repertoire perturbation, calculated for each patient in respect to an individual reference profile averaged over all available time points.

Results

For 11 out of 15 patients, average Vβ1/Vβ2/Vβ11/Vβ14 repertoires were less perturbed under than outside ivIg therapy. The four exceptions with relatively increased average perturbation during ivIg therapy included three patients who failed to respond clinically to an ivIg therapy cycle. Patients' Treg CD25 surface density (cytometric MFI) was clearly reduced when compared to healthy controls, but not obviously influenced by ivIg. However, patients' average Treg CD25 MFI was found negatively correlated with both Vβ11 and Vβ14 perturbations measured under ivIg therapy.

Conclusions

This indicates a role of active Tregs in the therapeutic effect of ivIg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnson Y, Shoenfeld Y, Amital H. Intravenous immunoglobulin therapy for autoimmune diseases. Autoimmunity. 2009;42(6):553–60.

    Article  PubMed  CAS  Google Scholar 

  2. Levy Y, Sherer Y, Ahmed A, Langevitz P, George J, Fabbrizzi F, et al. A study of 20 SLE patients with intravenous immunoglobulin - clinical and serologic response. Lupus. 1999;8(9):705–12.

    Article  PubMed  CAS  Google Scholar 

  3. Zandman-Goddard G, Blank M, Shoenfeld Y. Intravenous immunoglobulins in systemic lupus erythematosus: from the bench to the bedside. Lupus. 2009;18(10):884–8.

    Article  PubMed  CAS  Google Scholar 

  4. Nimmerjahn F, Ravetch JV. Antibody-mediated modulation of immune responses. Immunol Rev. 2010;236:265–75.

    Article  PubMed  CAS  Google Scholar 

  5. Smith KGC, Clatworthy MR. Fc gamma RIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10(5):328–43.

    Article  PubMed  CAS  Google Scholar 

  6. Joao C, Ogle BM, Gay-Rabinstein C, Platt JL, Cascalho M. B Cell-dependent TCR diversification. J Immunol. 2004;172(8):4709–16.

    PubMed  CAS  Google Scholar 

  7. Joao C, Ogle BM, Geyer S. Immunoglobulin promotes the diversity and the function of T cells. Eur J Immunol. 2006;36(7):1718–28.

    Article  PubMed  CAS  Google Scholar 

  8. Pires AE, Afonso AF, Queiros A, Cabral MS, Porrata L, Markovic SN, et al. Treatment With Polyclonal Immunoglobulin During T-cell Reconstitution Promotes Naive T-cell Proliferation. J Immunother. 2010;33(6):618–25.

    Article  PubMed  CAS  Google Scholar 

  9. Kessel A, Ammuri H, Peri R, Pavlotzky ER, Blank M, Shoenfeld Y, et al. Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. J Immunol. 2007;179:5571–5.

    PubMed  CAS  Google Scholar 

  10. De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt L, Moingeon P, et al. Activation of natural regulatory T cells by IgG Fc-derived peptide "Tregitopes". Blood. 2008;112(8):3303–11.

    Article  PubMed  Google Scholar 

  11. Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, et al. Expansion of CD4(+)CD25(+) regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood. 2008;111(2):715–22.

    Article  PubMed  CAS  Google Scholar 

  12. Maddur MS, Othy S, Hegde P, Vani J, Lacroix-Desmazes S, Bayry J, et al. Immunomodulation by Intravenous Immunoglobulin: Role of Regulatory T Cells. J Clin Immunol. 2010;30:S4–8.

    Article  PubMed  CAS  Google Scholar 

  13. Olivito B, Taddio A, Simonini G, Massai C, Ciullini S, Gambineri E, et al. Defective FOXP3 expression in patients with acute Kawasaki disease and restoration by intravenous immunoglobulin therapy. Clin Exp Rheumatol. 2010;28(1 Suppl 57):93–7.

    PubMed  Google Scholar 

  14. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3(+) regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500.

    Article  PubMed  CAS  Google Scholar 

  15. Scheinecker C, Bonelli M, Smolen JS. Pathogenetic aspects of systemic lupus erythematosus with an emphasis on regulatory T cells. J Autoimmun. 2010;35(3):269–75.

    Article  PubMed  CAS  Google Scholar 

  16. Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4(+)CD25(high) T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol. 2007;178(4):2579–88.

    PubMed  CAS  Google Scholar 

  17. Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C. Phenotypic and Functional Analysis of CD4(+)CD25(−)Foxp3(+) T Cells in Patients with Systemic Lupus Erythematosus. J Immunol. 2009;182(3):1689–95.

    PubMed  CAS  Google Scholar 

  18. Horwitz DA. Identity of mysterious CD4(+)CD25(−)Foxp3(+) cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(1):201.

    Article  Google Scholar 

  19. Zheng L, Sharma R, Kung JT, Deshmukh US, Jarjour WN, Fu SM, et al. Pervasive and stochastic changes in the TCR repertoire of regulatory T-cell-deficient mice. Int Immunol. 2008;20(4):517–23.

    Article  PubMed  CAS  Google Scholar 

  20. Zennaro D, Scala E, Pomponi D, Caprini E, Arcelli D, Gambineri E, et al. Proteomics plus genomics approaches in primary immunodeficiency: the case of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Clin Exp Immunol. 2012;167(1):120–8.

    Article  PubMed  CAS  Google Scholar 

  21. Pannetier C, Cochet M, Darche S, Casrouge A, Zoller M, Kourilsky P. The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta-chains vary as a function of the recombined germ-line segments. Proc Natl Acad Sci USA. 1993;90(9):4319–23.

    Article  PubMed  CAS  Google Scholar 

  22. Fitzgerald JE, Ricalton NS, Meyer AC, West SG, Kaplan H, Behrendt C, et al. Analysis of clonal CD8(+) T-cell expansions in normal individuals and patients with rheumatoid arthritis. J Immunol. 1995;154(7):3538–47.

    PubMed  CAS  Google Scholar 

  23. Gulwani-Akolkar B, Akolkar PN, Minassian A, Pergolizzi R, McKinley M, Mullin G, et al. Selective expansion of specific T cell receptors in the inflamed colon of Crohn's disease. J Clin Invest. 1996;98(6):1344–54.

    Article  PubMed  CAS  Google Scholar 

  24. Wagner UG, Koetz K, Weyand CM, Goronzy JJ. Perturbation of the T cell repertoire in rheumatoid arthritis. Proc Natl Acad Sci USA. 1998;95(24):14447–52.

    Article  PubMed  CAS  Google Scholar 

  25. Matsumoto Y, Yoon WK, Jee Y, Fujihara K, Misu T, Sato S, et al. Complementarity-determining region 3 spectratyping analysis of the TCR repertoire in multiple sclerosis. J Immunol. 2003;170(9):4846–53.

    PubMed  CAS  Google Scholar 

  26. Diluvio L, Vollmer S, Besgen P, Ellwart JW, Chimenti S, Prinz JC. Identical TCR beta-chain rearrangements in streptococcal angina and skin lesions of patients with psoriasis vulgaris. J Immunol. 2006;176(11):7104–11.

    PubMed  CAS  Google Scholar 

  27. Matsumoto Y, Matsuo H, Sakuma H, Park IK, Tsukada Y, Kohyama K, et al. CDR3 spectratyping analysis of the TCR repertoire in myasthenia gravis. J Immunol. 2006;176(8):5100–7.

    PubMed  CAS  Google Scholar 

  28. Olive C, Gatenby PA, Serjeantson SW. Restricted junctional diversity of T-cell receptor delta-gene rearrangements expressed in systemic lupus erythematosus (SLE) patients. Clin Exp Immunol. 1994;97(3):430–8.

    Article  PubMed  CAS  Google Scholar 

  29. Holbrook MR, Tighe PJ, Powell RJ. Restrictions of T cell receptor beta chain repertoire in the peripheral blood of patients with systemic lupus erythematosus. Ann Rheum Dis. 1996;55(9):627–31.

    Article  PubMed  CAS  Google Scholar 

  30. Kolowos W, Herrmann M, Ponner BB, Voll R, Kern P, Frank C, et al. Detection of restricted junctional diversity of peripheral T cells in SLE patients by spectratyping. Lupus. 1997;6(9):701–7.

    Article  PubMed  CAS  Google Scholar 

  31. Fraser PA, Lu LY, DeCeulaer K, Schur PH, Fici D, Awdeh Z, et al. CD4 TCRBV CDR3 analysis in prevalent SLE cases from two ethnic groups. Lupus. 1999;8(4):311–9.

    Article  PubMed  CAS  Google Scholar 

  32. Kato T, Kurokawa M, Sasakawa H, Masuko-Hongo K, Matsui T, Sekine T, et al. Analysis of accumulated T cell clonotypes in patients with systemic lupus erythematosus. Arthritis Rheum. 2000;43(12):2712–21.

    Article  PubMed  CAS  Google Scholar 

  33. Massengill SF, Goodenow MM, Sleasman JW. SLE nephritis is associated with an oligoclonal expansion of intrarenal T cells. Am J Kidney Dis. 1998;31(3):418–26.

    Article  PubMed  CAS  Google Scholar 

  34. Collette A, Six A. ISEApeaks: an Excel platform for GeneScan and Immunoscope data retrieval, management and analysis. Bioinformatics. 2002;18(2):329–30.

    Article  PubMed  CAS  Google Scholar 

  35. Collette A, Cazenave PA, Pied S, Six A. New methods and software tools for high throughput CDR3 spectratyping. Application to T lymphocyte repertoire modifications during experimental malaria. J Immunol Meth. 2003;278(1–2):105–16.

    Article  CAS  Google Scholar 

  36. Gorochov G, Neumann AU, Kereveur A, Parizot C, Li TS, Katlama C, et al. Perturbation of CD4(+) and CD8(+) T-cell repertoires during progression to AIDS and regulation of the CD4(+) repertoire during antiviral therapy. Nat Med. 1998;4(2):215–21.

    Article  PubMed  CAS  Google Scholar 

  37. Han M, Harrison L, Kehn P, Stevenson K, Currier J, Robinson MA. Invariant or highly conserved TCR alpha are expressed on double-negative (CD3(+)CD4(−)CD8(−)) and CD8(+) T cells. J Immunol. 1999;163(1):301–11.

    PubMed  CAS  Google Scholar 

  38. Rosner B. A Generalization of the Paired t-Test. Appl Statist. 1982;31(1):9–13.

    Article  Google Scholar 

  39. Press W. Numerical Recipes in C. Cambridge: Cambridge University Press; 1994.

    Google Scholar 

  40. R development Core Team (2012) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing

  41. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional Delineation and Differentiation Dynamics of Human CD4(+) T Cells Expressing the FoxP3 Transcription Factor. Immunity. 2009;30(6):899–911.

    Article  PubMed  CAS  Google Scholar 

  42. Lawson TM, Man S, Williams S, Boon ACM, Zambon M, Borysiewicz LK. Influenza A antigen exposure selects dominant V(beta)17(+) TCR in human CD8(+) cytotoxic T cell responses. Int Immunol. 2001;13(11):1373–81.

    Article  PubMed  CAS  Google Scholar 

  43. Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol. 2006;6(12):883–94.

    Article  PubMed  CAS  Google Scholar 

  44. Gras S, Kjer-Nielsen L, Burrows SR, McCluskey J, Rossjohn J. T-cell receptor bias and immunity. Curr Opin Immunol. 2008;20(1):119–25.

    Article  PubMed  CAS  Google Scholar 

  45. Miles JJ, Thammanichanond D, Moneer S, Nivarthi UK, Kjer-Nielsen L, Tracy SL, et al. Antigen-Driven Patterns of TCR Bias Are Shared across Diverse Outcomes of Human Hepatitis C Virus Infection. J Immunol. 2011;186(2):901–12.

    Article  PubMed  CAS  Google Scholar 

  46. Roux E, Dumont-Girard F, Starobinski M, Siegrist CA, Helg C, Chapuis B, et al. Recovery of immune reactivity after T-cell-depleted bone marrow transplantation depends on thymic activity. Blood. 2000;96(6):2299–303.

    PubMed  CAS  Google Scholar 

  47. Hirokawa M, Matsutani T, Horiuchi T, Kawabata Y, Kitabayashi A, Yoshioka T, et al. Extensive clonal expansion of T lymphocytes causes contracted diversity of complementarity-determining region 3 and skewed T cell receptor repertoires after allogeneic hematopoietic cell transplantation. Bone Marrow Transplan. 2001;27(6):607–14.

    Article  CAS  Google Scholar 

  48. Talvensarri K, Clave E, Douay C, Rabian C, Garderet L, Busson M, et al. A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood. 2002;99(4):1458–64.

    Article  Google Scholar 

  49. Kou ZC, Puhr JS, Wu SS, Goodenow MM, Sleasman JW. Combination Antiretroviral therapy results in a rapid increase in T cell receptor variable region beta repertoire diversity within CD45RA CD8 T cells in human immunodeficiency virus-infected children. J Infect Dis. 2003;187(3):385–97.

    Article  PubMed  CAS  Google Scholar 

  50. Ria F, Penitente R, De Santis M, Nicolo C, Di Sante G, Orsini M, et al. Collagen-specific T-cell repertoire in blood and synovial fluid varies with disease activity in early rheumatoid arthritis. Arthritis Res Ther. 2008;10(6):R135.

    Article  PubMed  Google Scholar 

  51. Jacobi AM, Diamond B. Balancing diversity and tolerance: lessons from patients with systemic lupus erythematosus. J Exp Med. 2005;202(3):341–4.

    Article  PubMed  CAS  Google Scholar 

  52. Crispin JC, Martinez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun. 2003;21(3):273–6.

    Article  PubMed  Google Scholar 

  53. Liu MF, Wang CR, Fung LL, Wu CR. Decreased CD4 + CD25+ T cells in peripheral blood of patients with systemic lupus erythematosus. Scand J Immunol. 2004;59:198–202.

    Article  PubMed  Google Scholar 

  54. Miyara M, Amoura Z, Parizot C, Badoual C, Dorgham K, Trad S, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol. 2005;175(12):8392–400.

    PubMed  CAS  Google Scholar 

  55. Lee JH, Wang LC, Lin YT, Yang YH, Lin DT, Chiang BL. Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology. 2006;117:280–6.

    Article  PubMed  CAS  Google Scholar 

  56. Joao C. Immunoglobulin is a highly diverse self-molecule that improves cellular diversity and function during immune reconstitution. Med Hypotheses. 2007;68(1):158–61.

    Article  PubMed  CAS  Google Scholar 

  57. Pacholczyk R, Kern J. The T-cell receptor repertoire of regulatory T cells. Immunology. 2008;125(4):450–8.

    Article  PubMed  CAS  Google Scholar 

  58. Aubin E, Lemieux R, Bazin R. Indirect inhibition of in vivo and in vitro T-cell responses by intravenous immunoglobulins due to impaired antigen presentation. Blood. 2010;115(9):1727–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research funding from Octapharma to Instituto Gulbenkian de Ciência. AEP and CF received postdoctoral fellowships from Fundação para a Ciência e a Tecnologia (FCT), Portugal (SFRH/BPD/20806/2004 and SFRH/BPD/34648/2007). Cooperation between Portugal and France was supported by a travel grant from Programa Pessoa (FCT, Portugal). We also thank the Serviço de Imunohemoterapia, Hospital de Egaz Moniz, Lisboa, for cooperation and acknowledge the local Post-genomic Platform of Pitié-Salpêtriêre (P3S) for providing access to its capillary sequencer facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Fesel.

Additional information

Nuno Costa, Ana E. Pires and Ana M. Gabriel contributed equally to the work.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Esm 1

(PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, N., Pires, A.E., Gabriel, A.M. et al. Broadened T-cell Repertoire Diversity in ivIg-treated SLE Patients is Also Related to the Individual Status of Regulatory T-cells. J Clin Immunol 33, 349–360 (2013). https://doi.org/10.1007/s10875-012-9816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9816-7

Keywords

Navigation