Skip to main content

Advertisement

Log in

Choroidal vascularity index in pseudoexfoliative glaucoma

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate choroidal vascular involvement in pseudoexfoliative glaucoma (PEXG) by applying the choroidal vascularity index (CVI) to optic coherence tomography (OCT) images.

Methods

Seventy-eight eyes from 40 subjects were included the study. Group 1 included healthy eyes (n = 20), group 2 eyes with PEX (n = 16), and group 3 eyes with PEXG (n = 42). OCT imaging of macular and peripapillary regions and retinal nerve fiber layer (RNFL) analyses were performed. CVI was calculated using ImageJ software.

Results

The mean age was 64.89 ± 5.8, 71.2 ± 7.8, and 68.24 ± 7.4 years in groups 1, 2, and 3, respectively (p = 0.046). There were no significant differences between the groups in terms of sex (p = 0.777). In macula, mean CVI rates were 66.97 ± 1.9%, 64.23 ± 1.2%, and 64.63 ± 1.6%, and in the peripapillary areas, mean CVI rates were 67.04 ± 1.5%, 65.20 ± 1.5%, and 64.14 ± 2.1% in groups 1, 2, and 3, respectively (group 1 vs. group 2 and 3, p = 0.000; group 2 vs. group 3, p > 0.05). The decrease in average RNFL thickness was statistically significant in group 3 compared to groups 1 and 2.

Conclusion

CVI could be used to assess choroidal vascular changes in ocular diseases. CVI was found to be reduced in PEX and PEXG, indicating an ocular vascular involvement in pseudoexfoliative process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All authors have full access to all the data.

References

  1. Ritch R (1994) Exfoliation syndrome-the most common identifiable cause of open-angle glaucoma. J Glaucoma 3(2):176–177

    CAS  PubMed  Google Scholar 

  2. Tarkkanen A (2018) Exfoliation syndrome: a historical perspective. J Glaucoma 27(Suppl 1):S1-s3. https://doi.org/10.1097/ijg.0000000000000901

    Article  PubMed  Google Scholar 

  3. Piejko P, Scislowicz A, Nowak M, Renke P, Chaniecki P (2018) Pseudoexfoliation syndrom. Pol Merkur Lekarski 45(268):164–167

    PubMed  Google Scholar 

  4. Schweitzer C (2018) Pseudoexfoliation syndrome and pseudoexfoliation glaucoma. J Fr Ophtalmol 41(1):78–90. https://doi.org/10.1016/j.jfo.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  5. Dewundara S, Pasquale LR (2015) Exfoliation syndrome: a disease with an environmental component. Curr Opin Ophthalmol 26(2):78–81. https://doi.org/10.1097/icu.0000000000000135

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ritch R, Schlotzer-Schrehardt U, Konstas AG (2003) Why is glaucoma associated with exfoliation syndrome? Prog Retin Eye Res 22(3):253–275. https://doi.org/10.1016/s1350-9462(02)00014-9

    Article  PubMed  Google Scholar 

  7. Dhingra D, Thattaruthody F, Pandav SS (2019) Pseudoexfoliative zonulopathy. J Glaucoma. https://doi.org/10.1097/ijg.0000000000001373

    Article  PubMed  Google Scholar 

  8. Shingleton BJ, Heltzer J, O’Donoghue MW (2003) Outcomes of phacoemulsification in patients with and without pseudoexfoliation syndrome. J Cataract Refract Surg 29(6):1080–1086. https://doi.org/10.1016/s0886-3350(02)01993-4

    Article  PubMed  Google Scholar 

  9. Davis D, Brubaker J, Espandar L, Stringham J, Crandall A, Werner L, Mamalis N (2009) Late in-the-bag spontaneous intraocular lens dislocation: evaluation of 86 consecutive cases. Ophthalmology 116(4):664–670. https://doi.org/10.1016/j.ophtha.2008.11.018

    Article  PubMed  Google Scholar 

  10. Prata TS, Rozenbaum I, de Moraes CG, Lima VC, Liebmann J, Ritch R (2010) Retinal vascular occlusions occur more frequently in the more affected eye in exfoliation syndrome. Eye (Lond) 24(4):658–662. https://doi.org/10.1038/eye.2009.152

    Article  CAS  Google Scholar 

  11. Ritch R, Schlotzer-Schrehardt U (2001) Exfoliation syndrome. Surv Ophthalmol 45(4):265–315. https://doi.org/10.1016/s0039-6257(00)00196-x

    Article  CAS  PubMed  Google Scholar 

  12. Cursiefen C, Hammer T, Kuchle M, Naumann GO, Schlotzer-Schrehardt U (2001) Pseudoexfoliation syndrome in eyes with ischemic central retinal vein occlusion. A histopathologic and electron microscopic study. Acta Ophthalmol Scand 79(5):476–478. https://doi.org/10.1034/j.1600-0420.2001.790509.x

    Article  CAS  PubMed  Google Scholar 

  13. Dagel T, Afsar B, Sag AA, Derin G, Kesim C, Tas AY, Sahin A, Dincer N, Kanbay M (2020) Noninvasive optical coherence tomography imaging correlates with anatomic and physiologic end-organ changes in healthy normotensives with systemic blood pressure variability. Blood Press Monit 25(2):89–94. https://doi.org/10.1097/mbp.0000000000000430

    Article  PubMed  Google Scholar 

  14. Barteselli G, Chhablani J, El-Emam S, Wang H, Chuang J, Kozak I, Cheng L, Bartsch DU, Freeman WR (2012) Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis. Ophthalmology 119(12):2572–2578. https://doi.org/10.1016/j.ophtha.2012.06.065

    Article  PubMed  Google Scholar 

  15. Agrawal R, Gupta P, Tan KA, Cheung CM, Wong TY, Cheng CY (2016) Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study. Sci Rep 6:21090. https://doi.org/10.1038/srep21090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim M, Kim RY, Park YH (2019) Choroidal vascularity index and choroidal thickness in human leukocyte antigen-B27-associated uveitis. Ocul Immunol Inflamm 27(8):1280–1287. https://doi.org/10.1080/09273948.2018.1530364

    Article  CAS  PubMed  Google Scholar 

  17. Jaisankar D, Raman R, Sharma HR, Khandelwal N, Bhende M, Agrawal R, Sridharan S, Biswas J (2019) Choroidal and retinal anatomical responses following systemic corticosteroid therapy in Vogt-Koyanagi-Harada disease using swept-source optical coherence tomography. Ocul Immunol Inflamm 27(2):235–243. https://doi.org/10.1080/09273948.2017.1332231

    Article  PubMed  Google Scholar 

  18. Agrawal R, Salman M, Tan KA, Karampelas M, Sim DA, Keane PA, Pavesio C (2016) Choroidal vascularity index (CVI)–a novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS ONE 11(1):e0146344. https://doi.org/10.1371/journal.pone.0146344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Invernizzi A, Benatti E, Cozzi M, Erba S, Vaishnavi S, Vupparaboina KK, Staurenghi G, Chhablani J, Gillies M, Viola F (2018) Choroidal structural changes correlate with neovascular activity in neovascular age related macular degeneration. Invest Ophthalmol Vis Sci 59(10):3836–3841. https://doi.org/10.1167/iovs.18-23960

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, Wang E, Yuan M, Chen Y (2020) Three-dimensional choroidal vascularity index in acute central serous chorioretinopathy using swept-source optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 258(2):241–247. https://doi.org/10.1007/s00417-019-04524-7

    Article  PubMed  Google Scholar 

  21. Pellegrini M, Veronese C, Bernabei F, Lupidi M, Cerquaglia A, Invernizzi A, Zicarelli F, Cimino L, Bolletta E, Vagge A, Ciardella AP (2019) Choroidal vascular changes in multiple evanescent white dot syndrome. Ocul Immunol Inflamm 29:340. https://doi.org/10.1080/09273948.2019.1678650

    Article  PubMed  Google Scholar 

  22. Wei X, Kumar S, Ding J, Khandelwal N, Agarwal M, Agrawal R (2019) Choroidal structural changes in smokers measured using choroidal vascularity index. Invest Ophthalmol Vis Sci 60(5):1316–1320. https://doi.org/10.1167/iovs.18-25764

    Article  PubMed  Google Scholar 

  23. Kim M, Choi SY, Park YH (2018) Quantitative analysis of retinal and choroidal microvascular changes in patients with diabetes. Sci Rep 8(1):12146. https://doi.org/10.1038/s41598-018-30699-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park Y, Cho KJ (2019) Choroidal vascular index in patients with open angle glaucoma and preperimetric glaucoma. PLoS ONE 14(3):e0213336. https://doi.org/10.1371/journal.pone.0213336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pellegrini M, Giannaccare G, Bernabei F, Moscardelli F, Schiavi C, Campos EC (2019) Choroidal vascular changes in arteritic and nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol 205:43–49. https://doi.org/10.1016/j.ajo.2019.03.028

    Article  PubMed  Google Scholar 

  26. Simsek M, Inam O, Sen E, Elgin U (2020) Peripapillary and macular choroidal vascularity index in patients with clinically unilateral pseudoexfoliation syndrome. Eye (Lond). https://doi.org/10.1038/s41433-020-01171-9

    Article  Google Scholar 

  27. Park JW, Suh MH, Agrawal R, Khandelwal N (2018) Peripapillary choroidal vascularity index in glaucoma-a comparison between spectral-domain OCT and OCT angiography. Invest Ophthalmol Vis Sci 59(8):3694–3701. https://doi.org/10.1167/iovs.18-24315

    Article  PubMed  Google Scholar 

  28. Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11(18):2183–2189. https://doi.org/10.1364/oe.11.002183

    Article  PubMed  Google Scholar 

  29. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500. https://doi.org/10.1016/j.ajo.2008.05.032

    Article  PubMed  Google Scholar 

  30. Singh SR, Vupparaboina KK, Goud A, Dansingani KK, Chhablani J (2019) Choroidal imaging biomarkers. Surv Ophthalmol 64(3):312–333. https://doi.org/10.1016/j.survophthal.2018.11.002

    Article  PubMed  Google Scholar 

  31. Goktas S, Sakarya Y, Ozcimen M, Sakarya R, Bukus A, Ivacik IS, Erdogan E (2014) Choroidal thinning in pseudoexfoliation syndrome detected by enhanced depth imaging optical coherence tomography. Eur J Ophthalmol 24(6):879–884. https://doi.org/10.5301/ejo.5000460

    Article  PubMed  Google Scholar 

  32. Turan-Vural E, Yenerel N, Okutucu M, Yildiz E, Dikmen N (2015) Measurement of subfoveal choroidal thickness in pseudoexfoliation syndrome using enhanced depth imaging optical coherence tomography. Ophthalmologica 233(3–4):204–208. https://doi.org/10.1159/000371899

    Article  PubMed  Google Scholar 

  33. Zengin MO, Cinar E, Karahan E, Tuncer I, Yilmaz S, Kocaturk T, Kucukerdonmez C (2015) Choroidal thickness changes in patients with pseudoexfoliation syndrome. Int Ophthalmol 35(4):513–517. https://doi.org/10.1007/s10792-014-9977-x

    Article  PubMed  Google Scholar 

  34. Ozge G, Koylu MT, Mumcuoglu T, Gundogan FC, Ozgonul C, Ayyildiz O, Kucukevcilioglu M (2016) Evaluation of retinal nerve fiber layer thickness and choroidal thickness in pseudoexfoliative glaucoma and pseudoexfoliative syndrome. Postgrad Med 128(4):444–448. https://doi.org/10.1080/00325481.2016.1170579

    Article  PubMed  Google Scholar 

  35. Sarrafpour S, Adhi M, Zhang JY, Duker JS, Krishnan C (2017) Choroidal vessel diameters in pseudoexfoliation and pseudoexfoliation glaucoma analyzed using spectral-domain optical coherence tomography. J Glaucoma 26(4):383–389. https://doi.org/10.1097/ijg.0000000000000629

    Article  PubMed  Google Scholar 

  36. Oruc Y, Kirgiz A (2019) Alteration of retinal vessel diameter of the patients with pseudoexfoliation and optical coherence tomography images. Curr Eye Res 44(11):1253–1257. https://doi.org/10.1080/02713683.2019.1632351

    Article  PubMed  Google Scholar 

  37. Cinar E, Yuce B, Aslan F (2019) Retinal and choroidal vascular changes in eyes with pseudoexfoliation syndrome: a comparative study using optical coherence tomography angiography. Balkan Med J 37(1):9–14. https://doi.org/10.4274/balkanmedj.galenos.2019.2019.5.5

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pradhan ZS, Rao HL, Dixit S, Sreenivasaiah S, Reddy PG, Venugopal JP, Puttaiah NK, Devi S, Weinreb RN, Mansouri K, Webers CAB (2019) Choroidal microvascular dropout in pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 60(6):2146–2151. https://doi.org/10.1167/iovs.19-26844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA, Diniz-Filho A, Saunders LJ, Weinreb RN (2016) Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology 123(12):2509–2518. https://doi.org/10.1016/j.ophtha.2016.09.002

    Article  PubMed  Google Scholar 

  40. Jo YH, Sung KR, Shin JW (2020) Comparison of peripapillary choroidal microvasculature dropout in primary open-angle, primary angle-closure, and pseudoexfoliation glaucoma. J Glaucoma 29(12):1152–1157. https://doi.org/10.1097/ijg.0000000000001650

    Article  PubMed  Google Scholar 

  41. Lisboa R, Leite MT, Zangwill LM, Tafreshi A, Weinreb RN, Medeiros FA (2012) Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology 119(11):2261–2269. https://doi.org/10.1016/j.ophtha.2012.06.009

    Article  PubMed  Google Scholar 

  42. Vergados A, Papaconstantinou D, Diagourtas A, Theodossiadis PG, Vergados I, Georgalas I (2015) Correlation between optic nerve head parameters, RNFL, and CCT in patients with bilateral pseudoexfoliation using HRT-III. Semin Ophthalmol 30(1):44–52. https://doi.org/10.3109/08820538.2013.821509

    Article  PubMed  Google Scholar 

  43. Mohamed MM (2009) Detection of early glaucomatous damage in pseudo exfoliation syndrome by assessment of retinal nerve fiber layer thickness. Middle East Afr J Ophthalmol 16(3):141–145. https://doi.org/10.4103/0974-9233.56228

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cankaya AB, Beyazyildiz E (2010) Scanning laser ophthalmoscopic parameters of eyes with exfoliation syndrome. Jpn J Ophthalmol 54(4):300–304. https://doi.org/10.1007/s10384-010-0829-6

    Article  PubMed  Google Scholar 

  45. Demircan S, Yılmaz U, Küçük E, Ulusoy MD, Ataş M, Gülhan A, Zararsız G (2017) The effect of pseudoexfoliation syndrome on the retinal nerve fiber layer and choroid thickness. Semin Ophthalmol 32(3):341–347. https://doi.org/10.3109/08820538.2015.1090611

    Article  PubMed  Google Scholar 

  46. Gandhi M, Dubey S (2013) Evaluation of the optic nerve head in glaucoma. J Curr Glaucoma Pract 7(3):106–114. https://doi.org/10.5005/jp-journals-10008-1146

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goud A, Singh SR, Sahoo NK, Rasheed MA, Vupparaboina KK, Ankireddy S, Lupidi M, Chhablani J (2019) New insights on choroidal vascularity: a comprehensive topographic approach. Invest Ophthalmol Vis Sci 60(10):3563–3569. https://doi.org/10.1167/iovs.18-26381

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsun Sahin.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

This retrospective study involving human participants was in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the institutional review board (IRB) of Koc University Committee on Human Research (No. 2020.025.IRB 2.006).

Consent to participate

Informed consent was not required, since the information is anonymized, and the submission does not include images that may identify the person.

Consent for publication

The authors affirm that the optic tomography images of human research participants have not been required informed consent for publication of the images in Figure 1a, 1b, and 1c, since the images do not identify person.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karslioglu, M.Z., Kesim, C., Yucel, O. et al. Choroidal vascularity index in pseudoexfoliative glaucoma. Int Ophthalmol 41, 4197–4208 (2021). https://doi.org/10.1007/s10792-021-01990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01990-z

Keywords

Navigation