Skip to main content

Advertisement

Log in

Evaluation of vitreoretinal interface changes in patients receiving intravitreal anti-VEGF therapy

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To study the effects of repeated intravitreal injection of anti-VEGF drug bevacizumab on the vitreoretinal interface (VRI).

Methods

Patients undergoing intravitreal injection of bevacizumab were enrolled. Eyes with media haze, uveitis, high myopia, history of cataract surgery or laser capsulotomy in last 6 months and complicated pseudophakia were excluded. VRI evaluation was done monthly for a minimum of 6 months. The nature and timing of the change(s) event was recorded.

Results

A total of 100 eyes were evaluated. Thirty-seven eyes developed new vitreoretinal interface change event (VICE). Pseudophakia (OR = 5.23, 95% CI = 1.99–14.07, p = 0.001), pre-injection VRI abnormality (OR = 2.63, 95% CI = 1.13–6.14, p = 0.024) and older age at enrollment (62.6 ± 13.9 vs. 56.3 ± 14 years) were risk factors for development of VICE. Eighty percent of interface events occurred in the first 3 months of therapy. Eight needed surgical intervention for consequences of vitreoretinal separation.

Conclusion

VICE is not infrequent in eyes receiving anti-VEGF therapy though rarely need surgical intervention. The first 3 months are the critical months to watch out for these events. The treating ophthalmologists must keep the risk factors for development of in mind and monitor and counsel patients accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rosenfeld P, Brown D, Heier J et al (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431

    Article  CAS  PubMed  Google Scholar 

  2. Brown D, Michels M, Kaiser P et al (2009) Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology 116:57–65

    Article  PubMed  Google Scholar 

  3. Brown D, Nguyen Q, Marcus D et al (2013) Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials. Ophthalmology 120:2013–2022

    Article  PubMed  Google Scholar 

  4. Schmidt-Erfurth U, Lang G, Holz F et al (2014) Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema. Ophthalmology 121:1045–1053

    Article  PubMed  Google Scholar 

  5. Ozturk B, Kerimoglu H, Bozkurt B, Okudan S (2011) Comparison of intravitreal bevacizumab and ranibizumab treatment for diabetic macular edema. J Ocul Pharmacol Ther 27:373–377

    Article  CAS  PubMed  Google Scholar 

  6. Rajendram R, Fraser-Bell S, Kaines A et al (2012) A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema. Arch Ophthalmol 130:972–979

    Article  CAS  PubMed  Google Scholar 

  7. Elman M, Qin H, Aiello L et al (2012) Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment. Ophthalmology 119:2312–2318

    Article  PubMed  Google Scholar 

  8. Brown DM, Campochiaro PA, Singh RP et al (2010) CRUISE investigators. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117:1124–1133

    Article  PubMed  Google Scholar 

  9. Brown D, Campochiaro P, Bhisitkul R et al (2011) Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology 118:1594–1602

    Article  PubMed  Google Scholar 

  10. Iturralde D, Spaide R, Meyerle C et al (2006) INtravitreal bevacizumab (Avastin) treatment of macular edema in central retinal vein occlusion. Retina 26:279–284

    Article  PubMed  Google Scholar 

  11. Rodrigues I, Stangos A, McHugh D, Jackson T (2013) Intravitreal injection of expansile perfluoropropane (C3F8) for the treatment of vitreomacular traction. Am J Ophthalmol 155:270–276

    Article  CAS  PubMed  Google Scholar 

  12. Stefansson E (2009) Physiology of vitreous surgery. Graefes Arch Clin Exp Ophthalmol 247:147–163

    Article  PubMed  Google Scholar 

  13. Gawecki M, Doroszkiewicz M, Rydzewski J (2010) Age related macular degeneration and presence of posterior vitreous detachment. Klin Ocz 112:210–212

    Google Scholar 

  14. Krebs I, Brannath W, Glittenberg C, Zeiler F, Sebag J, Binder S (2007) Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration? Am J Ophthalmol 144:741–746

    Article  PubMed  Google Scholar 

  15. Lopes de Faria J, Jalkh A, Trempe C, Mcmeel J (1999) Diabetic macular edema, risk factors and concomitants. Acta Ophthalmol Scand 77:170–175

    Article  CAS  PubMed  Google Scholar 

  16. Ondeş F, Yilmaz G, Acar MA, Unlü N, Kocaoğlan H, Arsan AK (2000) Role of the vitreous in age-related macular degeneration. Jpn J Ophthalmol 44:91–93

    Article  PubMed  Google Scholar 

  17. Schulze S, Hoerle S, Mennel S, Kroll P (2008) Vitreomacular traction and exudative age-related macular degeneration. Acta Ophthalmol 86:470–481

    Article  PubMed  Google Scholar 

  18. Nasrallah F, Jalkh A, Van Coppenolle F et al (1988) The role of the vitreous in diabetic macular edema. Ophthalmology 95:1335–1339

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto S, Yamamoto T, Ogata K, Hoshino A, Sato E, Mizunoya S (2004) Morphological and functional changes of the macula after vitrectomy and creation of posterior vitreous detachment in eyes with diabetic macular edema. Doc Ophthalmol 109:249–253

    Article  PubMed  Google Scholar 

  20. Simpson A, Petrarca R, Jackson T (2012) Vitreomacular adhesion and neovascular age-related macular degeneration. Surv Ophthalmol 57:498–509

    Article  PubMed  Google Scholar 

  21. Ophir A, Trevino A, Martinez MR (2010) Extrafoveal vitreous traction associated with branch retinal vein occlusion. Eur J Ophthalmol 20:733–739

    Article  PubMed  Google Scholar 

  22. Uchino E, Uemura A, Ohba N (2001) Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol 119:1475–1479

    Article  CAS  PubMed  Google Scholar 

  23. Duker JS, Kaiser PK, Binder S et al (2013) The international vitreomacular traction study group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619

    Article  PubMed  Google Scholar 

  24. Geck U, Pustolla N, Baraki H, Atili A, Feltgen N, Hoerauf H (2013) Posterior vitreous detachment following intravitreal drug injection. Graefes Arch Clin Exp Ophthalmol 251(7):1691–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Veloso CE, Kanadani TM, Pereira FB, Nehemy MB (2015) Vitreomacular interface after anti-vascular endothelial growth factor injections in neovascular age-related macular degeneration. Ophthalmology 122(8):1569–1572

    Article  PubMed  Google Scholar 

  26. Clemens C, Holz F, Meyer C (2010) Macular hole formation in the presence of a pigment epithelial detachment after three consecutive intravitreal antivascular endothelial growth factor injections. J Ocul Pharmacol Ther 26:297–299

    Article  CAS  PubMed  Google Scholar 

  27. Moisseiev E, Goldstein M, Loewenstein A, Moisseiev J (2010) Macular hole following intravitreal bevacizumab injection in choroidal neovascularization caused by age-related macular degeneration. Case Rep Ophthalmol 1:36–41

    Article  PubMed  PubMed Central  Google Scholar 

  28. Latinize R, Ramoni A, Scotti F, Introini U (2007) Macular hole and intravitreal injection of triamcinolone acetonide for macular edema due to central retinal vein occlusion. Eur J Ophthalmol 17:451–453

    Article  Google Scholar 

  29. Bakri S, Omar A (2012) Evolution of vitreomacular traction following the use of the dexamethasone intravitreal implant (Ozurdex) in the treatment of macular edema secondary to central retinal vein occlusion. J Ocul Pharmacol Ther 28:547–549

    Article  CAS  PubMed  Google Scholar 

  30. Mayr-Sponer U, Waldstein S, Kundi M et al (2013) Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology 120:2620–2629

    Article  PubMed  Google Scholar 

  31. Waldstein S, Ritter M, Simader C, Mayr-Sponer U, Kundi M, Schmidt-Erfurth U (2014) Impact of vitreomacular adhesion on ranibizumab mono- and combination therapy for neovascular age-related macular degeneration. Am J Ophthalmol 158:328–336

    Article  CAS  PubMed  Google Scholar 

  32. Sivaprasad S, Ockrim Z, Massaoutis P, Jkeji F, Hykin P, Gregor Z (2008) Posterior hyaloid changes following intravitreal triamcinolone and macular laser for diffuse diabetic macular edema. Retina 28:1435–1442

    Article  PubMed  Google Scholar 

  33. Stalmans P, Benz MS, Gandorfer A, Kampik A, Girach A, Pakola S, Haller JA, MIVI-TRUST Study Group (2012) Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med 367:606–615

    Article  CAS  PubMed  Google Scholar 

  34. Weber-Krause B, Eckardt U (1996) Incidence of posterior vitreous detachment in eyes with and without age-related macular degeneration. An ultrasonic study. Ophthalmologe 93(6):660–665

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumeet Khanduja.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinra, V., Singh, S., Khanduja, S. et al. Evaluation of vitreoretinal interface changes in patients receiving intravitreal anti-VEGF therapy. Int Ophthalmol 38, 549–556 (2018). https://doi.org/10.1007/s10792-017-0490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-017-0490-x

Keywords

Navigation