Skip to main content

Advertisement

Log in

Photorefractive keratectomy for myopia and myopic astigmatism correction using the WaveLight Allegretto Wave Eye-Q excimer laser system

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

To analyze photorefractive keratectomy (PRK) outcomes in myopia and myopic astigmatism correction using the WaveLight Allegretto Wave Eye-Q® excimer laser system (WaveLight Laser Technologie AG, Erlangen, Germany). 222 eyes of 151 patients underwent PRK (mean age 33.5 ± 6.8 years). Pre-operative best spectacle-corrected visual acuity (BSCVA) ranged from 0.4 to −0.1 logMAR (mean −0.03 ± 0.06). Mean spherical equivalent (SE) was −3.29 ± 1.20 D. Efficacy, predictability and safety were evaluated. Minimum follow-up was 3 months. Accountability at 3 and 6 months was 100 and 54 %, respectively (median follow-up 5 months, mean 5.2 ± 2.6 months). At 3 months, mean uncorrected visual acuity (UCVA) was −0.02 ± 0.07 logMAR, BSCVA −0.03 ± 0.05 logMAR, efficacy index 0.98 and safety index 1.02. UCVA was ≥20/16 in 40.1 %, ≥20/20 in 86.5 % and ≥20/25 in 98.2 %. Mean SE was −0.02 ± 0.20 D. Residual refractive error was ± 0.13 D in 81.5 %, ± 0.25 D in 88.7 % and ± 0.50 D in 97.7 %. At 6 months, outcomes were similar: mean UCVA was −0.02 ± 0.07 logMAR, BSCVA −0.03 ± 0.06 logMAR, efficacy index 1.00 and safety index 1.03. UCVA was ≥20/16 in 43.7 %, ≥20/20 in 86.6 % and ≥20/25 in 96.6 %. Mean SE was −0.02 ± 0.17 D. Residual refractive error was ± 0.13 D in 86.6 %, ± 0.25 D in 93.3 % and ± 0.50 D in 98.3 %. Refractive stability was achieved at 3 months. No patient lost more than one line of BSCVA. There were no retreatments. The WaveLight Allegretto Wave Eye-Q is effective, predictable and safe in low-to-moderate myopia and myopic astigmatism PRK correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sakimoto T, Rosenblatt MI, Azar DT (2006) Laser eye surgery for refractive errors. Lancet 367:1432–1447

    Article  PubMed  Google Scholar 

  2. Shortt AJ, Bunce C, Allan B (2006) Evidence for superior efficacy and safety of LASIK over photorefractive keratectomy for correction of myopia. Ophthalmology 113:1897–1908

    Article  PubMed  Google Scholar 

  3. American Academy of Ophthalmology (1999) Excimer laser photorefractive keratectomy (PRK) for myopia and astigmatism. Ophthalmic procedure preliminary assessment. Ophthalmology 106:422–437

    Article  Google Scholar 

  4. Summary of safety and effectiveness data for a premarket approval application (for the wavefront-optimized correction of myopia with the Allegretto Wave). http://www.fda.gov/ohrms/dockets/ dailys/03/Nov03/110503/03 m-0491-aav0001-03-SSED-vol1.pdf. Accessed 19 June 2013

  5. Mastropasqua L, Toto L, Zuppardi E, Nubile M, Carpineto P, Di Nicola M, Ballone E (2006) Photorefractive keratectomy with aspheric profile of ablation versus conventional photorefractive keratectomy for myopia correction: six-month controlled clinical trial. J Cataract Refract Surg 32:109–116

    Article  PubMed  Google Scholar 

  6. Mastropasqua L, Toto L, Zuppardi E, Nubile M, Carpineto P, Di Nicola M, Ballone E (2006) Zyoptix wavefront-guided versus standard photorefractive keratectomy (PRK) in low and moderate myopia: randomized controlled 6-month study. Eur J Ophthalmol 16:219–228

    CAS  PubMed  Google Scholar 

  7. Stojanovic A, Wang L, Jankov MR, Nitter TA, Wang Q (2008) Wavefront optimized versus custom-Q treatments in surface ablation for myopic astigmatism with the WaveLight Allegretto laser. J Refract Surg 24:779–789

    PubMed  Google Scholar 

  8. Ghoreishi SM, Naderibeni A, Peyman A, Rismanchian A, Eslami F (2009) Aspheric profile versus wavefront-guided ablation photorefractive keratectomy for the correction of myopia using the Allegretto Eye Q. Eur J Ophthalmol 19:544–553

    PubMed  Google Scholar 

  9. Randleman JB, Perez-Straziota CE, Hu MH, White AJ, Loft ES, Stulting RD (2009) Higher-order aberrations after wavefront-optimized photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg 35:260–264

    Article  PubMed Central  PubMed  Google Scholar 

  10. Shojaei A, Mohammad-Rabei H, Eslani M, Elahi B, Noorizadeh F (2009) Long-term evaluation of complications and results of photorefractive keratectomy in myopia: an 8-year follow-up. Cornea 28:304–310

    Article  PubMed  Google Scholar 

  11. Kymionis GD, Diakonis VF, Kounis G, Bouzoukis DI, Gkenos E, Ginis H, Yoo SH, Pallikaris IG (2008) Effect of excimer laser repetition rate on outcomes after photorefractive keratectomy. J Cataract Refract Surg 34:916–919

    Article  PubMed  Google Scholar 

  12. George MR, Shah RA, Hood C, Krueger RR (2010) Transitioning to optimized correction with the WaveLight Allegretto Wave: case distribution, visual outcomes, and wavefront aberrations. J Refract Surg 26:S806–S813

    Article  PubMed  Google Scholar 

  13. Gambato C, Catania AG, Vujosevic S, Midena E (2011) Wavefront-optimized surface ablation with the Allegretto Wave Eye-Q excimer laser platform: 12-month visual and refractive results. J Refract Surg 27:792–795

    Article  PubMed  Google Scholar 

  14. Moshirfar M, Churgin DS, Betts BS, Hsu M, Sikder S, Neuffer M, Church D, Mifflin MD (2011) Prospective, randomized, fellow eye comparison of WaveLight Allegretto Wave Eye-Q versus VISX CustomVueTM STAR S4 IRTM in photorefractive keratectomy: analysis of visual outcomes and higher-order aberrations. Clin Ophthalmol 5:1185–1193

    Article  PubMed Central  PubMed  Google Scholar 

  15. Nassiri N, Safi S, Aghazade Amiri M, Sheibani K, Safi H, Panahi N, Nassiri N (2011) Visual outcome and contrast sensitivity after photorefractive keratectomy in low to moderate myopia: wavefront-optimized versus conventional methods. J Cataract Refract Surg 37:1858–1864

    Article  PubMed  Google Scholar 

  16. Fantes FE, Hanna KD, Waring GO III, Pouliquen Y, Thompson KP, Savoldelli M (1990) Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol 108:665–675

    Article  CAS  PubMed  Google Scholar 

  17. Koch DD, Kohnen T, Obstbaum SA, Rosen ES (1998) Format for reporting refractive surgical data. J Cataract Refract Surg 24:285–287

    Article  CAS  PubMed  Google Scholar 

  18. Holladay JT (1997) Proper method for calculating average visual acuity. J Refract Surg 13:388–391

    CAS  PubMed  Google Scholar 

  19. Waring GO III (2000) Standard graphs for reporting refractive surgery. J Refract Surg 16:459–466

    PubMed  Google Scholar 

  20. Reinstein DZ, Waring GO III (2009) Graphic reporting of outcomes of refractive surgery. J Refract Surg 25:975–978

    Article  PubMed  Google Scholar 

  21. Miyai T, Miyata K, Nejima R, Honbo M, Minami K, Amano S (2008) Comparison of laser in situ keratomileusis and photorefractive keratectomy results: long-term follow-up. J Cataract Refract Surg 34:1527–1531

    Article  PubMed  Google Scholar 

  22. El-Maghraby A, Salah T, Waring GO 3rd, Klyce S, Ibrahim O (1999) Randomized bilateral comparison of excimer laser in situ keratomileusis and photorefractive keratectomy for 2.50 to 8.00 diopters of myopia. Ophthalmology 106:447–457

    Article  CAS  PubMed  Google Scholar 

  23. El Danasoury MA, El-Maghraby A, Klyce SD, Mehrez K (1999) Comparison of photorefractive keratectomy with excimer laser in situ keratomileusis in correcting low myopia (from -2.00 to -5.50 diopters). A randomized study. Ophthalmology 106:411–420 discussion 420-421

    Article  CAS  PubMed  Google Scholar 

  24. Trattler WB, Barnes SD (2008) Current trends in advanced surface ablation. Curr Opin Ophthalmol 19:330–334

    Article  PubMed  Google Scholar 

  25. Falavarjani KG, Hashemi M, Modarres M, Sanjari MS, Darvish N, Gordiz A (2011) Topography-guided vs wavefront-optimized surface ablation for myopia using the WaveLight platform: a contralateral eye study. J Refract Surg 27:13–17

    Google Scholar 

  26. Panday VA, Reilly CD (2009) Refractive surgery in the United States Air Force. Curr Opin Ophthalmol 20:242–246

    Article  PubMed  Google Scholar 

  27. Slade SG, Durrie DS, Binder PS (2009) A prospective, contralateral eye study comparing thin-flap LASIK (sub-Bowman keratomileusis) with photorefractive keratectomy. Ophthalmology 116:1075–1082

    Article  PubMed  Google Scholar 

  28. Alió JL, Muftuoglu O, Ortiz D, Artola A, Pérez-santonja JJ, de Luna GC, Abu-Mustafa SK, Garcia MJ (2008) Ten-year follow-up of photorefractive keratectomy for myopia less than 6.00 D. Am J Ophthalmol 145:29–36

    Article  PubMed  Google Scholar 

  29. Kohnen T (2001) Measuring vision in refractive surgery [editorial]. J Cataract Refract Surg 27:1897–1898

    Article  CAS  PubMed  Google Scholar 

  30. Oshika T, Klyce SD, Applegate RA, Howland HC, El-Danasoury MA (1999) Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol 127:1–7

    Article  CAS  PubMed  Google Scholar 

  31. Mrochen M (2001) Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery. J Cataract Refract Surg 27:201–207

    Article  CAS  PubMed  Google Scholar 

  32. Anera RG, Jiménez JR, Barco LJ, Bermúdez J, Hita E (2003) Changes in corneal asphericity after laser in situ keratomileusis. J Cataract Refract Surg 29:762–768

    Article  PubMed  Google Scholar 

  33. Kanjani N, Jacob S, Agarwal A, Agarwal A, Agarwal S, Agarwal T, Doshi A, Doshi S (2004) Wavefront and topography-guided ablation in myopic eyes using Zyoptix. J Cataract Refract Surg 30:398–402

    Article  PubMed  Google Scholar 

  34. Koller T, Iseli HP, Hafezi F, Mrochen M, Seiler T (2006) Q-factor customized ablation profile for the correction of myopic astigmatism. J Cataract Refract Surg 32:584–589

    Article  PubMed  Google Scholar 

  35. Chung S, Lee IS, Lee YG, Lee HK, Kim EK, Yoon G, Seo KY (2006) Comparison of higher-order aberrations after wavefront-guided laser in situ keratomileusis and laser-assisted subepithelial keratectomy. J Cataract Refract Surg 32:779–784

    Article  PubMed  Google Scholar 

  36. Du C, Shen Y, Wang Y (2007) Comparison of high order aberration after conventional and customized ablation in myopic LASIK in different eyes of the same patient. J Zhejiang Univ Sci B 8:177–180

    Article  PubMed Central  PubMed  Google Scholar 

  37. Myrowitz EH, Chuck RS (2009) A comparison of wavefront-optimized and wavefront-guided ablations. Curr Opin Ophthalmol 20:247–250

    Article  PubMed  Google Scholar 

  38. Seiler T, Kaemmerer M, Mierdel P, Krinke HE (2000) Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism. Arch Ophthalmol 118:17–21

    Article  CAS  PubMed  Google Scholar 

  39. Hersh PS, Fry K, Blaker JW (2003) Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology. J Cataract Refract Surg 29:2096–2104

    Article  PubMed  Google Scholar 

  40. Yamane N, Miyata K, Samejima T, Hiraoka T, Kiuchi T, Okamoto F, Hirohara Y, Mihashi T, Oshika T (2004) Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis. Invest Ophthalmol Vis Sci 45:3986–3990

    Article  PubMed  Google Scholar 

  41. Kohnen T (2006) Classification of excimer laser profiles [editorial]. J Cataract Refract Surg 32:543–544

    Article  PubMed  Google Scholar 

  42. Mrochen M, Kaemmerer M, Seiler T (2000) Wavefront-guided laser in situ keratomileusis: early results in three eyes. J Refract Surg 16:116–121

    CAS  PubMed  Google Scholar 

  43. MacRae SM, Williams DR (2001) Wavefront guided ablation [editorial]. Am J Ophthalmol 132:915–919

    Article  CAS  PubMed  Google Scholar 

  44. Stonecipher KG, Kezirian GM (2008) Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the Allegretto Wave: three-month results of a prospective FDA trial. J Refract Surg 24:S424–S430

    PubMed  Google Scholar 

  45. Igarashi A, Kamiya K, Komatsu M, Shimizu K (2009) Aspheric laser in situ keratomileusis for the correction of myopia using the Technolas 217z100: comparison of outcomes versus results from the conventional technique. Jpn J Ophthalmol 53:458–463

    Article  PubMed  Google Scholar 

  46. Padmanabhan P, Mrochen M, Basuthkar S, Viswanathan D, Joseph R (2008) Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study. J Cataract Refract Surg 34:389–397

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Conflict of interest

No commercial, proprietary or financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmeralda Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, E., Franqueira, N., Rosa, A.M. et al. Photorefractive keratectomy for myopia and myopic astigmatism correction using the WaveLight Allegretto Wave Eye-Q excimer laser system. Int Ophthalmol 34, 477–484 (2014). https://doi.org/10.1007/s10792-013-9833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-013-9833-4

Keywords

Navigation