Skip to main content
Log in

Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Overactivation of the sympatho-adrenergic system is an essential mechanism providing short-term adaptation to the stressful conditions of critical illnesses. In the same way, the administration of exogenous catecholamines is mandatory to support the failing circulation in acutely ill patients. In contrast to these short-term benefits, prolonged adrenergic stress is detrimental to the cardiovascular system by initiating a series of adverse effects triggering significant cardiotoxicity, whose pathophysiological mechanisms are complex and only partially elucidated. In addition to the development of myocardial oxygen supply/demand imbalance induced by the sustained activation of adrenergic receptors, catecholamines can damage cardiomyocytes by fostering mitochondrial dysfunction, via two main mechanisms. The first one is calcium overload, consecutive to β-adrenergic receptor-mediated activation of protein kinase A and subsequent phosphorylation of multiple Ca2+-cycling proteins. The second one is oxidative stress, primarily related to the transformation of catecholamines into “aminochromes,” which undergo redox cycling in mitochondria to generate copious amounts of oxygen-derived free radicals. In turn, calcium overload and oxidative stress promote mitochondrial permeability transition and cardiomyocyte cell death, both via the apoptotic and necrotic pathways. Comparable mechanisms of myocardial toxicity, including marked oxidative stress and mitochondrial dysfunction, have been reported with the use of cocaine, a common recreational drug with potent sympathomimetic activity. The aim of the current review is to present in detail the pathophysiological processes underlying the development of catecholamine and cocaine-induced cardiomyopathy, as such conditions may be frequently encountered in the clinical practice of cardiologists and ICU specialists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dunser MW, Hasibeder WR (2009) Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med 24:293–316

    Article  PubMed  Google Scholar 

  2. Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113:739–753

    Article  CAS  PubMed  Google Scholar 

  3. Tacon CL, McCaffrey J, Delaney A (2012) Dobutamine for patients with severe heart failure: a systematic review and meta-analysis of randomised controlled trials. Intensive Care Med 38:359–367

    Article  CAS  PubMed  Google Scholar 

  4. Mebazaa A, Parissis J, Porcher R, Gayat E, Nikolaou M, Boas FV, Delgado JF, Follath F (2011) Short-term survival by treatment among patients hospitalized with acute heart failure: the global ALARM-HF registry using propensity scoring methods. Intensive Care Med 37:290–301

    Article  PubMed  Google Scholar 

  5. Schmittinger CA, Torgersen C, Luckner G, Schroder DC, Lorenz I, Dunser MW (2012) Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med 38:950–958

    Article  CAS  PubMed  Google Scholar 

  6. Costa VM, Carvalho F, Bastos ML, Carvalho RA, Carvalho M, Remiao F (2011) Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases. Curr Med Chem 18:2272–2314

    Article  CAS  PubMed  Google Scholar 

  7. Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56:331–349

    Article  CAS  PubMed  Google Scholar 

  8. Alexander SP, Mathie A, Peters JA (2011) Guide to receptors and channels (GRAC), 5th edition. Br J Pharmacol 164(Suppl 1):S1–S324

    Article  CAS  PubMed  Google Scholar 

  9. Molinoff PB (1984) α- and β-adrenergic receptor subtypes properties, distribution and regulation. Drugs 28(Suppl 2):1–15

    Article  CAS  PubMed  Google Scholar 

  10. Bangash MN, Kong ML, Pearse RM (2012) Use of inotropes and vasopressor agents in critically ill patients. Br J Pharmacol 165:2015–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Philipp M, Brede M, Hein L (2002) Physiological significance of α(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283:R287–R295

    CAS  PubMed  Google Scholar 

  12. Fu Y, Xiao H, Zhang Y (2012) β-adrenoceptor signaling pathways mediate cardiac pathological remodeling. Front Biosci (Elite Ed) 4:1625–1637

    Article  Google Scholar 

  13. Chruscinski A, Brede ME, Meinel L, Lohse MJ, Kobilka BK, Hein L (2001) Differential distribution of β-adrenergic receptor subtypes in blood vessels of knockout mice lacking β(1)- or β(2)-adrenergic receptors. Mol Pharmacol 60:955–962

    CAS  PubMed  Google Scholar 

  14. Gauthier C, Langin D, Balligand JL (2000) β3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21:426–431

    Article  CAS  PubMed  Google Scholar 

  15. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  16. Bers DM, Despa S (2009) Na/K-ATPase—an integral player in the adrenergic fight-or-flight response. Trends Cardiovasc Med 19:111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hollenberg SM (2011) Vasoactive drugs in circulatory shock. Am J Respir Crit Care Med 183:847–855

    Article  CAS  PubMed  Google Scholar 

  18. Floras JS (2009) Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 54:375–385

    Article  CAS  PubMed  Google Scholar 

  19. Nanda AS, Feldman A, Liang CS (1995) Acute reversal of pheochromocytoma-induced catecholamine cardiomyopathy. Clin Cardiol 18:421–423

    Article  CAS  PubMed  Google Scholar 

  20. Nef HM, Mollmann H, Akashi YJ, Hamm CW (2010) Mechanisms of stress (Takotsubo) cardiomyopathy. Nat Rev Cardiol 7:187–193

    Article  PubMed  Google Scholar 

  21. Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306

    Article  CAS  PubMed  Google Scholar 

  22. Pearce RM (1906) Experimental myocarditis: a study of the histological changes following intravenous injections of adrenalin. J Exp Med 8:400–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jodalen H, Neely JR (1991) Lipid accumulation in the perfused rat heart after isoproterenol administration. Acta Physiol Scand Suppl 599:93–97

    CAS  PubMed  Google Scholar 

  24. Behonick GS, Novak MJ, Nealley EW, Baskin SI (2001) Toxicology update: the cardiotoxicity of the oxidative stress metabolites of catecholamines (aminochromes). J Appl Toxicol 21(Suppl 1):S15–S22

    Article  CAS  PubMed  Google Scholar 

  25. Borkowski BJ, Cheema Y, Shahbaz AU, Bhattacharya SK, Weber KT (2011) Cation dyshomeostasis and cardiomyocyte necrosis: the Fleckenstein hypothesis revisited. Eur Heart J 32:1846–1853

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fleckenstein A, Janke J, Doring HJ, Leder O (1974) Myocardial fiber necrosis due to intracellular Ca overload—a new principle in cardiac pathophysiology. Recent Adv Stud Cardiac Struct Metab 4:563–580

    CAS  PubMed  Google Scholar 

  27. Fleckenstein A, Kanke J, Doring HJ, Leder O (1975) Key role of Ca in the production of noncoronarogenic myocardial necroses. Recent Adv Stud Cardiac Struct Metab 6:21–32

    CAS  PubMed  Google Scholar 

  28. Khan MU, Cheema Y, Shahbaz AU, Ahokas RA, Sun Y, Gerling IC, Bhattacharya SK, Weber KT (2012) Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states. Pflugers Archiv: Eur J Physiol 464:123–131

    Article  CAS  Google Scholar 

  29. Zhang X, Szeto C, Gao E, Tang M, Jin J, Fu Q, Makarewich C, Ai X, Li Y, Tang A, Wang J, Gao H, Wang F, Ge XJ, Kunapuli SP, Zhou L, Zeng C, Xiang KY, Chen X (2013) Cardiotoxic and cardioprotective features of chronic β-adrenergic signaling. Circ Res 112:498–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Swaminathan PD, Purohit A, Hund TJ, Anderson ME (2012) Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 110:1661–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amin JK, Xiao L, Pimental DR, Pagano PJ, Singh K, Sawyer DB, Colucci WS (2001) Reactive oxygen species mediate α-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:131–139

    Article  CAS  PubMed  Google Scholar 

  32. Remiao F, Milhazes N, Borges F, Carvalho F, Bastos ML, Lemos-Amado F, Domingues P, Ferrer-Correia A (2003) Synthesis and analysis of aminochromes by HPLC-photodiode array. Adrenochrome evaluation in rat blood. Biomed Chromatogr 17:6–13

    Article  CAS  PubMed  Google Scholar 

  33. Haskova P, Kovarikova P, Koubkova L, Vavrova A, Mackova E, Simunek T (2011) Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity. Free Radic Biol Med 50:537–549

    Article  CAS  PubMed  Google Scholar 

  34. Remiao F, Carmo H, Carvalho F, Bastos ML (2001) Copper enhances isoproterenol toxicity in isolated rat cardiomyocytes: effects on oxidative stress. Cardiovasc Toxicol 1:195–204

    Article  CAS  PubMed  Google Scholar 

  35. Taam GM, Takeo S, Ziegelhoffer A, Singal PK, Beamish RE, Dhalla NS (1986) Effect of adrenochrome on adenine nucleotides and mitochondrial oxidative phosphorylation in rat heart. Can J Cardiol 2:88–93

    CAS  PubMed  Google Scholar 

  36. Yates JC, Beamish RE, Dhalla NS (1981) Ventricular dysfunction and necrosis produced by adrenochrome metabolite of epinephrine: relation to pathogenesis of catecholamine cardiomyopathy. Am Heart J 102:210–221

    Article  CAS  PubMed  Google Scholar 

  37. Yates JC, Taam GM, Singal PK, Beamish RE, Dhalla NS (1980) Protection against adrenochrome-induced myocardial damage by various pharmacological interventions. Br J Exp Pathol 61:242–255

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Karmazyn M, Beamish RE, Fliegel L, Dhalla NS (1981) Adrenochrome-induced coronary artery constriction in the rat heart. J Pharmacol Exp Ther 219:225–230

    CAS  PubMed  Google Scholar 

  39. Bindoli A, Deeble DJ, Rigobello MP, Galzigna L (1990) Direct and respiratory chain-mediated redox cycling of adrenochrome. Biochim Biophys Acta 1016:349–356

    Article  CAS  PubMed  Google Scholar 

  40. Genova ML, Abd-Elsalam NM, Mahdy el SM, Bernacchia A, Lucarini M, Pedulli GF, Lenaz G (2006) Redox cycling of adrenaline and adrenochrome catalysed by mitochondrial complex I. Arch Biochem Biophys 447:167–173

    Article  CAS  PubMed  Google Scholar 

  41. Liaudet L, Vassalli G, Pacher P (2009) Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front Biosci 14:4809–4814

    Article  Google Scholar 

  42. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patel V, Upaganlawar A, Zalawadia R, Balaraman R (2010) Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: a biochemical, electrocardiographic and histoarchitectural evaluation. Eur J Pharmacol 644:160–168

    Article  CAS  PubMed  Google Scholar 

  44. Panda S, Kar A, Banerjee T, Sharma N (2012) Combined effects of quercetin and atenolol in reducing isoproterenol-induced cardiotoxicity in rats: possible mediation through scavenging free radicals. Cardiovasc Toxicol 12:235–242

    Article  CAS  PubMed  Google Scholar 

  45. Buttros JB, Bergamaschi CT, Ribeiro DA, Fracalossi AC, Campos RR (2009) Cardioprotective actions of ascorbic acid during isoproterenol-induced acute myocardial infarction in rats. Pharmacology 84:29–37

    Article  CAS  PubMed  Google Scholar 

  46. Nagoor Meeran MF, Stanely Mainzen Prince P, Hidhayath Basha R (2012) Preventive effects of N-acetyl cysteine on lipids, lipoproteins and myocardial infarct size in isoproterenol induced myocardial infarcted rats: an in vivo and in vitro study. Eur J Pharmacol 677:116–122

    Article  PubMed  Google Scholar 

  47. Izem-Meziane M, Djerdjouri B, Rimbaud S, Caffin F, Fortin D, Garnier A, Veksler V, Joubert F, Ventura-Clapier R (2012) Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am J Physiol Heart Circ Physiol 302:H665–H674

    Article  CAS  PubMed  Google Scholar 

  48. Biary N, Xie C, Kauffman J, Akar FG (2011) Biophysical properties and functional consequences of reactive oxygen species (ROS)-induced ROS release in intact myocardium. J Physiol 589:5167–5179

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831

    Article  CAS  PubMed  Google Scholar 

  51. Brenner C, Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111:1237–1247

    Article  CAS  PubMed  Google Scholar 

  52. Phillips K, Luk A, Soor GS, Abraham JR, Leong S, Butany J (2009) Cocaine cardiotoxicity: a review of the pathophysiology, pathology, and treatment options. Am J Cardiovasc Drugs 9:177–196

    Article  CAS  PubMed  Google Scholar 

  53. Schwartz BG, Rezkalla S, Kloner RA (2010) Cardiovascular effects of cocaine. Circulation 122:2558–2569

    Article  PubMed  Google Scholar 

  54. Kloner RA, Rezkalla SH (2003) Cocaine and the heart. N Engl J Med 348:487–488

    Article  PubMed  Google Scholar 

  55. Lange RA, Hillis LD (2001) Cardiovascular complications of cocaine use. N Engl J Med 345:351–358

    Article  CAS  PubMed  Google Scholar 

  56. Lippi G, Plebani M, Cervellin G (2010) Cocaine in acute myocardial infarction. Adv Clin Chem 51:53–70

    Article  CAS  PubMed  Google Scholar 

  57. Rump AF, Theisohn M, Klaus W (1995) The pathophysiology of cocaine cardiotoxicity. Forensic Sci Int 71:103–115

    Article  CAS  PubMed  Google Scholar 

  58. Pradhan L, Mondal D, Chandra S, Ali M, Agrawal KC (2008) Molecular analysis of cocaine-induced endothelial dysfunction: role of endothelin-1 and nitric oxide. Cardiovasc Toxicol 8:161–171

    Article  CAS  PubMed  Google Scholar 

  59. Wilbert-Lampen U, Seliger C, Zilker T, Arendt RM (1998) Cocaine increases the endothelial release of immunoreactive endothelin and its concentrations in human plasma and urine: reversal by coincubation with sigma-receptor antagonists. Circulation 98:385–390

    Article  CAS  PubMed  Google Scholar 

  60. Pereira J, Saez CG, Pallavicini J, Panes O, Pereira-Flores K, Cabreras MJ, Massardo T, Mezzano D (2011) Platelet activation in chronic cocaine users: effect of short term abstinence. Platelets 22:596–601

    Article  CAS  PubMed  Google Scholar 

  61. Steffel J, Iseli S, Arnet C, Luscher TF, Tanner FC (2006) Cocaine unbalances endothelial tissue factor and tissue factor pathway inhibitor expression. J Mol Cell Cardiol 40:746–749

    Article  CAS  PubMed  Google Scholar 

  62. Moliterno DJ, Lange RA, Gerard RD, Willard JE, Lackner C, Hillis LD (1994) Influence of intranasal cocaine on plasma constituents associated with endogenous thrombosis and thrombolysis. Am J Med 96:492–496

    Article  CAS  PubMed  Google Scholar 

  63. Mittleman MA, Mintzer D, Maclure M, Tofler GH, Sherwood JB, Muller JE (1999) Triggering of myocardial infarction by cocaine. Circulation 99:2737–2741

    Article  CAS  PubMed  Google Scholar 

  64. Tazelaar HD, Karch SB, Stephens BG, Billingham ME (1987) Cocaine and the heart. Hum Pathol 18:195–199

    Article  CAS  PubMed  Google Scholar 

  65. Isabelle M, Vergeade A, Moritz F, Dautreaux B, Henry JP, Lallemand F, Richard V, Mulder P, Thuillez C, Monteil C (2007) NADPH oxidase inhibition prevents cocaine-induced up-regulation of xanthine oxidoreductase and cardiac dysfunction. J Mol Cell Cardiol 42:326–332

    Article  CAS  PubMed  Google Scholar 

  66. Moritz F, Monteil C, Isabelle M, Bauer F, Renet S, Mulder P, Richard V, Thuillez C (2003) Role of reactive oxygen species in cocaine-induced cardiac dysfunction. Cardiovasc Res 59:834–843

    Article  CAS  PubMed  Google Scholar 

  67. Vergeade A, Mulder P, Vendeville-Dehaudt C, Estour F, Fortin D, Ventura-Clapier R, Thuillez C, Monteil C (2010) Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: Prevention by the targeted antioxidant MitoQ. Free Radic Biol Med 49:748–756

    Article  CAS  PubMed  Google Scholar 

  68. Pacifici R, Fiaschi AI, Micheli L, Centini F, Giorgi G, Zuccaro P, Pichini S, Di Carlo S, Bacosi A, Cerretani D (2003) Immunosuppression and oxidative stress induced by acute and chronic exposure to cocaine in rat. Int Immunopharmacol 3:581–592

    Article  CAS  PubMed  Google Scholar 

  69. Afonso L, Mohammad T, Thatai D (2007) Crack whips the heart: a review of the cardiovascular toxicity of cocaine. Am J Cardiol 100:1040–1043

    Article  CAS  PubMed  Google Scholar 

  70. Darke S, Kaye S, Duflou J (2006) Comparative cardiac pathology among deaths due to cocaine toxicity, opioid toxicity and non-drug-related causes. Addiction 101:1771–1777

    Article  PubMed  Google Scholar 

  71. Isabelle M, Monteil C, Moritz F, Dautreaux B, Henry JP, Richard V, Mulder P, Thuillez C (2005) Role of α1-adrenoreceptors in cocaine-induced NADPH oxidase expression and cardiac dysfunction. Cardiovasc Res 67:699–704

    Article  CAS  PubMed  Google Scholar 

  72. Fan L, Sawbridge D, George V, Teng L, Bailey A, Kitchen I, Li JM (2009) Chronic cocaine-induced cardiac oxidative stress and mitogen-activated protein kinase activation: the role of Nox2 oxidase. J Pharmacol Exp Ther 328:99–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vergeade A, Mulder P, Vendeville C, Ventura-Clapier R, Thuillez C, Monteil C (2012) Xanthine oxidase contributes to mitochondrial ROS generation in an experimental model of cocaine-induced diastolic dysfunction. J Cardiovasc Pharmacol 60:538–543

    Article  CAS  PubMed  Google Scholar 

  74. Boess F, Ndikum-Moffor FM, Boelsterli UA, Roberts SM (2000) Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species. Biochem Pharmacol 60:615–623

    Article  CAS  PubMed  Google Scholar 

  75. Kovacic P (2005) Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses 64:350–356

    Article  CAS  PubMed  Google Scholar 

  76. Pacher P, Nivorozhkin A, Szabo C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lloyd RV, Shuster L, Mason RP (1993) Reexamination of the microsomal transformation of N-hydroxynorcocaine to norcocaine nitroxide. Mol Pharmacol 43:645–648

    CAS  PubMed  Google Scholar 

  78. Shuster L, Casey E, Welankiwar SS (1983) Metabolism of cocaine and norcocaine to N-hydroxynorcocaine. Biochem Pharmacol 32:3045–3051

    Article  CAS  PubMed  Google Scholar 

  79. Rauckman EJ, Rosen GM, Cavagnaro J (1982) Norcocaine nitroxide. A potential hepatotoxic metabolite of cocaine. Mol Pharmacol 21:458–463

    CAS  PubMed  Google Scholar 

  80. Li G, Xiao Y, Zhang L (2005) Cocaine induces apoptosis in fetal rat myocardial cells through the p38 mitogen-activated protein kinase and mitochondrial/cytochrome c pathways. J Pharmacol Exp Ther 312:112–119

    Article  CAS  PubMed  Google Scholar 

  81. Xiao Y, He J, Gilbert RD, Zhang L (2000) Cocaine induces apoptosis in fetal myocardial cells through a mitochondria-dependent pathway. J Pharmacol Exp Ther 292:8–14

    CAS  PubMed  Google Scholar 

  82. He J, Xiao Y, Casiano CA, Zhang L (2000) Role of mitochondrial cytochrome c in cocaine-induced apoptosis in coronary artery endothelial cells. J Pharmacol Exp Ther 295:896–903

    CAS  PubMed  Google Scholar 

  83. Mukhopadhyay P, Horvath B, Zsengeller Z, Batkai S, Cao Z, Kechrid M, Holovac E, Erdelyi K, Tanchian G, Liaudet L, Stillman IE, Joseph J, Kalyanaraman B, Pacher P (2012) Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia–reperfusion: therapeutic potential of mitochondrially targeted antioxidants. Free Radic Biol Med 53:1123–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mukhopadhyay P, Horvath B, Zsengeller Z, Zielonka J, Tanchian G, Holovac E, Kechrid M, Patel V, Stillman IE, Parikh SM, Joseph J, Kalyanaraman B, Pacher P (2012) Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med 52:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rudis MI, Basha MA, Zarowitz BJ (1996) Is it time to reposition vasopressors and inotropes in sepsis? Crit Care Med 24:525–537

    Article  CAS  PubMed  Google Scholar 

  86. Galougahi KK, Liu CC, Bundgaard H, Rasmussen HH (2012) β-Adrenergic regulation of the cardiac Na+–K+ ATPase mediated by oxidative signaling. Trends Cardiovasc Med 22:83–87

    Article  CAS  PubMed  Google Scholar 

  87. Hollenberg SM (2009) Inotrope and vasopressor therapy of septic shock. Crit Care Clin 25:781–802

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a grant from the Swiss National Fund for Scientific Research (No. 320000/118174) to LL and by the Intramural Program of the NIH/NIAAA to PP.

Conflict of interest

Drs. Lucas LIAUDET, Belinda CALDERARI and Pal PACHER have no conflicts of interest or financial ties to disclose with respect to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Liaudet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liaudet, L., Calderari, B. & Pacher, P. Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity. Heart Fail Rev 19, 815–824 (2014). https://doi.org/10.1007/s10741-014-9418-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-014-9418-y

Keywords

Navigation