Skip to main content

Advertisement

Log in

The effects of topical treatment with curcumin on burn wound healing in rats

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The present study was designed to determine the role of topical treatment with curcumin (Cur) on burn wound healing in rats. The Wistar-albino rats were randomly allotted into one of three experimental groups: 4th, 8th and 12th day (post burn) and all groups include subgroups which Burn and Burn + Cur. Each group contains 12 animals. Burn wounds were made on the back of rat and Cur was administered topically. At the end of the study, all animals were sacrificed and the wound tissues removed for analyse to biochemical and histopathological changes. There was a significant increase in the hydroxyproline levels in the skin of the Cur groups. Cur treated wounds were found to heal much faster as indicated by improved rates of inflammatory cells, collagen deposition, angiogenesis, granulation tissue formation and epithelialization which were also confirmed by histopathological and biochemical examinations. Our data also indicate that there is a rise in the expression of proliferating cell nuclear antigen in skin tissues of Cur-treated rats in the Burn group. The results clearly substantiate the beneficial effects of the topical application of Cur in the acceleration of wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aktas C, Kanter M, Erboga M et al (2012a) Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicol Ind Health 28(2):122–130

    Article  PubMed  CAS  Google Scholar 

  • Aktas C, Kanter M, Kocak Z (2012b) Antiapoptotic and proliferative activity of curcumin on ovarian follicles in mice exposed to whole body ionizing radiation. Toxicol Ind Health 28(9):853–864

    Article  Google Scholar 

  • Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Bergman I, Loxley R (1963) Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal Chem 35:1961–1965

    Article  CAS  Google Scholar 

  • Chen J, Tang XQ, Zhi JL et al (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ioninduced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943–953

    Article  PubMed  CAS  Google Scholar 

  • Chung AS, Kao WJ (2009) Fibroblasts regulate monocyte response to ECM-derived matrix: the effects on monocyte adhesion and the production of inflammatory, matrix remodeling, and growth factor proteins. J Biomed Mater Res A 89:841–853

    PubMed  Google Scholar 

  • Eigner D, Scholz D (1999) Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J Ethnopharmacol 67:1–6

    Article  PubMed  CAS  Google Scholar 

  • Foschi D, Trabucchi E, Musazzi M et al (1988) The effects of oxygen free radicals on wound healing. Int J Tissue React 10:373–379

    PubMed  CAS  Google Scholar 

  • Gong F, Cheng X, Wang S et al (2010) Heparinimmobilized polymers as non-inflammatory and non-thrombogenic coating materials for arsenic trioxide eluting stents. Acta Biomater 6:534–546

    Article  PubMed  CAS  Google Scholar 

  • Gopinath D, Ahmed MR, Gomathi K et al (2004) Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25(10):1911–1917

    Article  PubMed  CAS  Google Scholar 

  • Guo S, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229

    Article  PubMed  CAS  Google Scholar 

  • Gurel A, Armutcu F, Hosnuter M et al (2004) Caffeic acid phenethyl ester improves oxidative organ damage in rat model of thermal trauma. Physiol Res 53:675–682

    PubMed  CAS  Google Scholar 

  • Haycock JW, Ralston DR, Morris B et al (1997) Oxidative damage to protein and alterations to antioxidant levels in human cutaneous thermal injury. Burns 23:533–540

    Article  PubMed  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidinbiotin-peroxidase complex (ABC) in immunperoxidase techniques: a comparison between ABC and unlabeled antibody (Pap) procedures. J Histochem Cytochem 29:577–580

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Liu Y, Yang Z et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351–1354

    Article  PubMed  CAS  Google Scholar 

  • Jagetia GC, Aggarwal BB (2007) ‘‘Spicing up’’ of the immune system by curcumin. J Clin Immunol 27:19–35

    Article  PubMed  CAS  Google Scholar 

  • Jagetia GC, Rajanikant GK (2004a) Effect of various doses of curcumin on the radiation-impaired healing of excision wound in mice: a preliminary study. J Wound Care 13:107–109

    PubMed  CAS  Google Scholar 

  • Jagetia GC, Rajanikant GK (2004b) Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wounds in mice whole-body exposed to various doses of γ-radiation. J Surg Res 120:127–138

    Article  PubMed  CAS  Google Scholar 

  • Jagetia GC, Rajanikant GK (2005) Curcumin treatment enhances the repair and regeneration of wounds in mice hemi-body exposed to γ radiation. Plast Reconstr Surg 115:515–528

    Article  PubMed  CAS  Google Scholar 

  • Karadag CA, Birtane M, Aygit AC et al (2007) The efficacy of linear polarized polychromatic light on burn wound healing: an experimental study on rats. J Burn Care Res 28(2):291–298

    Article  PubMed  Google Scholar 

  • Leung A (1980) Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. John Wiley, New York, NY, pp 313–314

    Google Scholar 

  • Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18

    Article  PubMed  CAS  Google Scholar 

  • Li X, Chen S, Zhang B et al (2012) In situ injectable nano-composite hydrogel composed of curcumin, N, O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int J Pharm 437(1–2):110–119

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Liu W, Han B et al (2011) Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. J Mater Sci Mater Med 22:175–183

    Article  PubMed  CAS  Google Scholar 

  • Lindner G, Menrad A, Gherardi E et al (2000) Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB J 14:319–332

    PubMed  CAS  Google Scholar 

  • Mani H, Sidhu GS, Kumari R et al (2002) Curcumin differentially regulates TGF-beta-1, its receptors and nitric oxide synthase during impaired wound healing. BioFactors 16:29–43

    Article  PubMed  CAS  Google Scholar 

  • Martin A (1996) The use of antioxidants in wound healing. Dermatol Surg 22:156–160

    Article  PubMed  CAS  Google Scholar 

  • Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81

    Article  PubMed  CAS  Google Scholar 

  • Panchatcharam M, Miriyala S, Gayathri VS, Suguna L (2006) Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem 290(1–2):87–96

    Article  PubMed  CAS  Google Scholar 

  • Perez-Arriaga L, Mendoza-Magana ML, Cortes-Zarate R et al (2006) Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop 98:152–161

    Article  PubMed  CAS  Google Scholar 

  • Phan TT, See P, Lee ST et al (2001) Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing. J Trauma 51:927–931

    Article  PubMed  CAS  Google Scholar 

  • Qian JJ, Zhai XG, Niu MH et al (2012) Curcumin inhibits iron overload-induced hepatocytic apoptosis and nuclear factor-κB activity. Zhonghua Yi Xue Za Zhi 92(28):1997–2001

    PubMed  CAS  Google Scholar 

  • Ramsewak RS, DeWitt DL, Nair MG (2000) Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I–III from Curcuma longa. Phytomedicine 7:303–308

    Article  PubMed  CAS  Google Scholar 

  • Salim SA (1988) The role of oxygen-derived free radicals in the management of venous (varicose) ulceration: a new approach. World J Surg 15:264–269

    Article  Google Scholar 

  • Schlager A, Oehler K, Huebner KU et al (2000) Healing of burns after treatment with 670-nanometer low-power laser light. Plast Reconstr Surg 105(5):1635–1639

    Article  PubMed  CAS  Google Scholar 

  • Shalom A, Kramer E, Westreich M (2011) Protective effect of human recombinant copper-zinc superoxide dismutase on zone of stasis survival in burns in rats. Ann Plast Surg 66(6):607–609

    Article  PubMed  CAS  Google Scholar 

  • Sidhu GS, Singh AK, Thaloor D et al (1998) Enhancement of wound healing by curcumin in animals. Wound Repair Regen 6:167–177

    Article  PubMed  CAS  Google Scholar 

  • Sidhu GS, Mani H, Gaddipati JP et al (1999) Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen 7:362–374

    Article  PubMed  CAS  Google Scholar 

  • Singer AJ, McClain SA, Romanov A et al (2007) Curcumin reduces burn progression in rats. Acad Emerg Med 14(12):1125–1129

    Article  PubMed  Google Scholar 

  • Sumitra M, Manikandan P, Suguna L (2005) Efficacy of Butea monosperma on dermal wound healing in rats. Int J Biochem Cell Biol 37(3):566–573

    Article  PubMed  CAS  Google Scholar 

  • Till GO, Guilds LS, Mahrougui M et al (1989) Role of xanthine oxidase in thermal injury of skin. Am J Pathol 1:195–202

    Google Scholar 

  • Wen H, Wu G, Chen W et al (2012) Topical application of leptin promotes burn wound healing in rats. Nan Fang Yi Ke Da Xue Xue Bao 32(5):703–706

    PubMed  CAS  Google Scholar 

  • Worsfold M, Davie MWJ, Haddaway MJ (1999) Agerelated changes in body composition, hydroxyproline, and creatinine excretion in normal women. Calcif Tissue Int 64:40–44

    Article  PubMed  CAS  Google Scholar 

  • Youn YK, Ladonde C, Demling R (1989) The role of mediators in the response to thermal injury. World J Surg 16:30–36

    Article  Google Scholar 

  • Yu L, Yi J, Ye G et al (2012) Effects of curcumin on levels of nitric oxide synthase and AQP-4 in a rat model of hypoxia-ischemic brain damage. Brain Res 26(1475):88–95

    Article  Google Scholar 

  • Yucel AF, Kanter M, Pergel A et al (2011) The role of curcumin on intestinal oxidative stress, cell proliferation and apoptosis after ischemia/reperfusion injury in rats. J Mol Histol 42(6):579–587

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Wei X, Bian K et al (2008) Effects of nitric oxide on skin burn wound healing. J Burn Care Res 29(5):804–814

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kulac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulac, M., Aktas, C., Tulubas, F. et al. The effects of topical treatment with curcumin on burn wound healing in rats. J Mol Hist 44, 83–90 (2013). https://doi.org/10.1007/s10735-012-9452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9452-9

Keywords

Navigation