Skip to main content
Log in

Imaging of pheochromocytoma and paraganglioma

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Paragangliomas are tumours that arise within the sympathetic nervous system originating from the neural crest. These tumours can be found anywhere from the neck to the pelvis in locations of sympathetic ganglions. Although in the majority of paragangliomas the diagnosis is based on measuring catecholamines and metabolites in plasma or urine, imaging plays an important preoperative role. Today, there are several morphological and radionuclide imaging methods available that predict tumour localisation and tumour extent and give anatomic information to the surgeon. MRI is the morphological imaging modality of choice in localising pheochromocytomas and extra-adrenal paragangliomas. It provides excellent anatomic detail and has the advantage of lacking ionising radiation. The overall accuracy of computed tomography (CT) in detecting primary adrenal pheochromocytomas is very high, but CT lacks in specificity as difficulties may occur in distinguishing between paragangliomas and other tumour entities. The major advantages of radionuclide imaging are very high specificity and routinely performed whole-body scanning. Furthermore, metabolic imaging is not influenced by artifacts like scar tissue or metallic clips in post-surgical follow-up. Currently, a reported specificity of 99% and a cumulative sensitivity of about 90% in paragangliomas make 123I-MIBG the most important nuclear imaging method. However, 18F-DOPA-PET seems to be a very promising procedure which offers higher accuracy. The higher spatial resolution of PET-scanners enables the detection of small lesions not visualised with 123I-MIBG. Both use of radiolabelled somatostatin analogue like 111In-pentetreotide and 18F-FDG is limited due to low specificity of the tracers and should be restricted to MIBG- and F-DOPA-negative cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Zak (1954) ArticleTitleAn expanded concept of glomus tissue NY State J Med. 54 1153 Occurrence Handle1:STN:280:CyuD2svls1A%3D

    CAS  Google Scholar 

  2. C Capella C Riva M Cornaggia et al. (1988) ArticleTitleHistopathology, cytology and cytochemistry of pheochromocytomas and paragangliomas including chemodectomas Path Res Pract. 183 176–87 Occurrence Handle1:STN:280:BieB283nt1w%3D Occurrence Handle2838831

    CAS  PubMed  Google Scholar 

  3. UN Riede W. Saeger (1993) Paraganglionäres System UN Riede HW Schaefer (Eds) Allgemeine und Spezielle Pathologie Thieme Stuttgart, Germany 989–91

    Google Scholar 

  4. JL. Parkin (1981) ArticleTitleFamilial multiple glomus tumors and pheochromocytomas Ann Otol Rhinol Laryngol 1981 IssueID90 60–3

    Google Scholar 

  5. HPH Neumann B Bausch SR Mc Whinney et al. (2002) ArticleTitleGerm-line mutations in nonsyndromic pheochromocytoma N Engl J Med. 346 1459–66 Occurrence Handle10.1056/NEJMoa020152 Occurrence Handle1:CAS:528:DC%2BD38XjsVynsLc%3D Occurrence Handle12000816

    Article  CAS  PubMed  Google Scholar 

  6. HPH Neumann DP Berger G Sigmund et al. (1993) ArticleTitlePheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel–Lindau disease N Engl J Med. 329 1531–8 Occurrence Handle10.1056/NEJM199311183292103 Occurrence Handle1:STN:280:ByuD3MbmsVY%3D Occurrence Handle8105382

    Article  CAS  PubMed  Google Scholar 

  7. BE Baysal RE Ferell JE Willet-Brozick et al. (2000) ArticleTitleMutations in SDHD, a mitochondrial complex II gene, in hereditary paragangliomas Science. 287 848–51 Occurrence Handle10.1126/science.287.5454.848 Occurrence Handle1:CAS:528:DC%2BD3cXhtVehtrs%3D Occurrence Handle10657297

    Article  CAS  PubMed  Google Scholar 

  8. S Gruffermann MW Gillman LR Pasternack et al. (1980) Familial carotid body tumors: case report and epidemiologic review, Cancer. 46 2116–22

    Google Scholar 

  9. A Tischler MA. Dichter (1977) ArticleTitleNeuroendocrine neoplasm and their cells of origin N Engl J Med. 296 919–25 Occurrence Handle1:STN:280:CSiC2cjgtFU%3D Occurrence Handle846514

    CAS  PubMed  Google Scholar 

  10. A Chang HS Glazer JK Lee et al. (1987) ArticleTitleAdrenal gland: MR imaging Radiology. 163 123–8 Occurrence Handle1:STN:280:BiiC2cjpslY%3D Occurrence Handle3823423

    CAS  PubMed  Google Scholar 

  11. CL. Schultz (1986) ArticleTitleCT and MR of the adrenal glands Semin Ultrasound 7 219–23

    Google Scholar 

  12. DG Mitchell M Crovello T Matteucci et al. (1992) ArticleTitleBenign adrenocortical masses: Diagnosis with chemical shift MR imaging Radiology. 185 345–51 Occurrence Handle1:STN:280:ByyD38bjtVM%3D Occurrence Handle1410337

    CAS  PubMed  Google Scholar 

  13. JH Bilbey RF McLoughlin PS Kurkjian et al. (1995) ArticleTitleMR imaging of adrenal masses: Value of chemical-shift imaging for distinguishing adenomas from other tumours Am J Roentgenol. 164 637–42 Occurrence Handle1:STN:280:ByqC28fgslM%3D

    CAS  Google Scholar 

  14. DA Bitter DS. Ross (1989) ArticleTitleIncidentally discovered adrenal masses Am J Surg. 158 159–61 Occurrence Handle10.1016/0002-9610(89)90367-X Occurrence Handle1:STN:280:BiaA3szpt1I%3D Occurrence Handle2757145

    Article  CAS  PubMed  Google Scholar 

  15. EK Outwater ES Siegelman AB Huang BA. Birnbaum (1996) ArticleTitleAdrenal masses: correlation between CT attenuation value and chemical shift ratio at MR imaging with in-phase and opposed-phase sequences Radiology 201 880–6 Occurrence Handle8939249

    PubMed  Google Scholar 

  16. SM Arnold R Strecker K Scheffler et al. (2003) ArticleTitleDynamic contrast enhancement of paragangliomas of the head and neck: evaluation with time-resolved 2D MR Eur J Radiol. 7 1608–11

    Google Scholar 

  17. JC Varghese PF Hahn N Papanicolaou et al. (1997) ArticleTitleMR differentiation of pheochromocytoma from other adrenal lesions based on qualitative analysis of T2 relaxation times Clin Radiol. 52 603–6 Occurrence Handle1:STN:280:ByiH38bnvVY%3D Occurrence Handle9285420

    CAS  PubMed  Google Scholar 

  18. S Maurea A Cuocolo JC Reynolds et al. (1996) ArticleTitleDiagnostic imaging in patients with paragangliomas Computed tomography, magnetic resonance and MIBG scintigraphy comparison. Q J Nucl Med. 40 365–71

    Google Scholar 

  19. WW Mayo-Smith MJ Lee MMJ McNicholas et al. (1995) ArticleTitleCharacterization of adrenal masses (<5 cm) by use of chemical shift MR imaging: observer clinical results versus quantitative measures Am J Roentgenol. 165 91–5 Occurrence Handle1:STN:280:ByqA3crhslc%3D

    CAS  Google Scholar 

  20. JP. McGahan (1988) ArticleTitleAdrenal gland: MR imaging Radiology. 166 284–5 Occurrence Handle1:STN:280:BieD1Mfht1I%3D Occurrence Handle3336697

    CAS  PubMed  Google Scholar 

  21. IR Francis MD Gross B Shapiro et al. (1992) ArticleTitleIntegrated imaging of adrenal disease Radiology. 184 1–13 Occurrence Handle1:STN:280:By2A3c3kvFM%3D Occurrence Handle1609063

    CAS  PubMed  Google Scholar 

  22. TJ Welch PF Sheedy JA Heerden Particlevan et al. (1983) ArticleTitlePheochromocytoma: Value of computed tomography Radiology. 148 501–3 Occurrence Handle1:STN:280:BiyB2cfhsVY%3D Occurrence Handle6867349

    CAS  PubMed  Google Scholar 

  23. WM Manger RW Gifford SuffixJr BB. Hoffman (1985) ArticleTitlePheochromocytoma: a clinical and experimental overview Curr Probl Cancer. 9 1–89 Occurrence Handle1:STN:280:BiiD38bks1A%3D

    CAS  Google Scholar 

  24. JJ Mukherjee PD Peppercorn RH Reznek et al. (1997) ArticleTitlePheochromocytoma: effect of nonionic contrast medium in CT on circulating catecholamine levels Radiology. 202 227–31 Occurrence Handle8988215

    PubMed  Google Scholar 

  25. LE Quint GM Glazer IR Francis et al. (1987) ArticleTitlePheochromocytoma and paraganlioma: comparison of MRI imaging with CT and I-131 MIBG scintigraphy Radiology. 165 89–93 Occurrence Handle1:STN:280:BiiA3MfmtlE%3D Occurrence Handle3628794

    CAS  PubMed  Google Scholar 

  26. MG Velchik A Alavi HY Kressel K. Engelman (1989) ArticleTitleLocalization of pheochromocytoma: MIGB, CT, and MRI correlation J Nucl Med. 30 328–36 Occurrence Handle1:STN:280:BiaB1Mzis1w%3D Occurrence Handle2738662

    CAS  PubMed  Google Scholar 

  27. DM Wieland JL Wu LE Brown et al. (1980) ArticleTitleRadiolabelled adrenergic neuron blocking agents: adrenomedullary imaging with 131I-iodobenzylguanidine J Nucl Med. 21 349–53 Occurrence Handle1:CAS:528:DyaL3cXkt1WltLY%3D Occurrence Handle7381563

    CAS  PubMed  Google Scholar 

  28. WH. Beierwaltes (1991) ArticleTitleEndocrine imaging: parathyroid, adrenal cortex and medulla, and other endocrine tumors Part II. J Nucl Med. 32 1627–39 Occurrence Handle1:STN:280:By6A3s3nt1U%3D

    CAS  Google Scholar 

  29. AJ McEwan B Shapiro JC Sisson et al. (1985) ArticleTitleRadioiodobezylguanidine for the scintigraphic location and therapy of adrenergic tumors J Nucl Med 21 349–53

    Google Scholar 

  30. L Smets L Loesberg M Janssen et al. (1989) ArticleTitleActive uptake and extravesicular storage of metaiodobenzylguanidin in human SK-N-SH cells Cancer Res. 49 2941–4 Occurrence Handle1:CAS:528:DyaL1MXksFensLg%3D Occurrence Handle2720653

    CAS  PubMed  Google Scholar 

  31. Shapiro B, Gross MD. Radioiodinated MIBG for the diagnostic scintigraphy and internal radiotherapy of neuroendocrine tumors. In: Troncone L (ed): I tumori della cresta neurale. Modena, Italy: Arcadia; 65–94

  32. CA. Hoefnagel (1994) ArticleTitleMetaiodobenzylguanidin and somatostatin in oncology: role in the management of neural crest tumours Eur J Nucl Med. 21 561–81 Occurrence Handle1:CAS:528:DyaK2cXmsV2msLY%3D Occurrence Handle7915987

    CAS  PubMed  Google Scholar 

  33. A Piepsz K Hahn I Roca et al. (1990) ArticleTitleA radiopharmaceuticals schedule for imaging in paediatrics Eur J Nucl Med. 17 127–9 Occurrence Handle1:STN:280:By6C383htVM%3D Occurrence Handle2279492

    CAS  PubMed  Google Scholar 

  34. KK Solanki J BomanjiJ Moyes et al. (1992) ArticleTitleA pharmacological guide to medicines which interfere with the biodistribution of radiolabelled metaiodobenzylguanidin (MIBG) Nucl Med Comm. 13 513–21 Occurrence Handle1:CAS:528:DyaK38XmtVOqtb0%3D

    CAS  Google Scholar 

  35. M Nakajo B Shapiro J Copp et al. (1983) ArticleTitleThe normal and abnormal distribution of the adrenomedullary imaging agent 131-I-iodobenzylguanidin (131I-MIBG) in man: evaluation by scintigraphy J Nucl Med. 24 672–82 Occurrence Handle1:CAS:528:DyaL3sXltFymtL4%3D Occurrence Handle6135764

    CAS  PubMed  Google Scholar 

  36. EP Krenning DJ Kwekkeboom WH Bakker et al. (1993) ArticleTitleSomatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and 123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients Eur J Nucl Med. 20 716–31 Occurrence Handle1:STN:280:ByuD3cbhtVw%3D Occurrence Handle8404961

    CAS  PubMed  Google Scholar 

  37. F Tenebaum J Lumbroso M Schlumberger et al. (1995) ArticleTitleComparison of radiolabelled octreotide and metaiodobenzylguanidin (MIBG) scintigraphy in malignant pheochromocytoma J Nucl Med. 36 1–6 Occurrence Handle7799058

    PubMed  Google Scholar 

  38. DJ Kwekkeboom H Urk Particlevan BKH Pauw et al. (1993) ArticleTitleOctreotide scintigraphy for detection of paragangliomas J Nucl Med. 34 873–8 Occurrence Handle1:STN:280:ByyB1cnnt1Y%3D Occurrence Handle8389841

    CAS  PubMed  Google Scholar 

  39. D Kopf A Bockisch H Steinert et al. (1997) ArticleTitleOctreotide scintigraphy and catecholamine response to an octreotide challenge in malignant pheochromocytoma Clin Endocrinol. 46 39–44 Occurrence Handle1:CAS:528:DyaK2sXhslOgsbs%3D

    CAS  Google Scholar 

  40. Bergström M, Eriksson B, Öberg K et al. In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of carbon-11-DOPA to carbon-11-dopamine. J Nucl Med 1996; 37: 32–7

    Google Scholar 

  41. I Ilias J Yu JA Carrasquillo et al. (2003) ArticleTitleSuperiority of 6-[(18)f] fluorodopamine positron emission tomography versus [(131)i]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma J Clin Endocrinol Metab. 88 4083–74 Occurrence Handle1:CAS:528:DC%2BD3sXntlahtbc%3D Occurrence Handle12970267

    CAS  PubMed  Google Scholar 

  42. S Hoegerle E Nitzsche C Altehoefer et al. (2003) ArticleTitlePheochromocytomas: detection with 18F DOPA whole-body PET – initial results Radiology. 222 507–12

    Google Scholar 

  43. K Pacak G Eisenhofer JA Carasquillo et al. (2001) ArticleTitle[18F] fluorodopamine positron emission tomographic (PET) scanning for diagnostic localization of pheochromocytoma Hypertension. 38 6–8 Occurrence Handle1:CAS:528:DC%2BD3MXls1KhtLc%3D Occurrence Handle11463751

    CAS  PubMed  Google Scholar 

  44. S Hoegerle C Altehoefer N Ghanem et al. (2001) ArticleTitle18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels Eur J Nucl Med. 28 64–71 Occurrence Handle1:CAS:528:DC%2BD3cXovFyjt7w%3D Occurrence Handle11202454

    CAS  PubMed  Google Scholar 

  45. S Hoegerle N Ghanem C Altehoefer et al. (2003) ArticleTitle18F-DOPA positron emission tomography for the detection of glomus tumours Eur J Nucl Med Mol Imag. 30 689–94 Occurrence Handle1:CAS:528:DC%2BD3sXjsF2ksb0%3D

    CAS  Google Scholar 

  46. S Hoegerle C Altehoefer N Ghanem et al. (2001) ArticleTitleWhole-body18F-DOPA-PET for detection of gastrointestinal carcinoid tumors Radiology. 220 373–80 Occurrence Handle1:STN:280:DC%2BD3MvjtFWksA%3D%3D Occurrence Handle11477239

    CAS  PubMed  Google Scholar 

  47. GW Boland MA Goldberg MJ Lee et al. (1995) ArticleTitleIndeterminate adrenal mass in patients with cancer: evaluation at PET with 2(F 18) fluoro-2-deoxy-D-glucose Radiology. 194 131–6 Occurrence Handle1:STN:280:ByqD1M%2FgvFM%3D Occurrence Handle7997539

    CAS  PubMed  Google Scholar 

  48. M Yun W Kim N Alnafisi et al. (2001) ArticleTitle18F-FDG-PET in characterizing adrenal lesions detected on CT or MRI J Nucl Med. 42 1795–9 Occurrence Handle1:STN:280:DC%2BD38%2FgtlOhuw%3D%3D Occurrence Handle11752075

    CAS  PubMed  Google Scholar 

  49. JJ Erasmus EF Patz SuffixJr HP McAdams et al. (1997) ArticleTitleEvaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography Am J Roentgenol. 168 1357–60 Occurrence Handle1:STN:280:ByiB2srmslA%3D

    CAS  Google Scholar 

  50. S Maurea C Mainolfi H Wang et al. (1996) ArticleTitlePositron emission tomography (PET) with flurodeoxyglucose F 18 in the study of adrenal masses: Comparison of benign and malignant lesions Radiol Medica. 92 782–7 Occurrence Handle1:STN:280:ByiB3s%2FptF0%3D

    CAS  Google Scholar 

  51. BL Shulkin NM Thompson B Shapiro et al. (1999) ArticleTitlePheochromocytomas: imaging with 2-[Fluorine-18]fluoro-2-deoxy-D-glucose PET Radiology. 212 35–41 Occurrence Handle1:STN:280:DyaK1MzjsVWruw%3D%3D Occurrence Handle10405717

    CAS  PubMed  Google Scholar 

  52. DR Neumann KE Basile EL Bravo et al. (1996) ArticleTitleMalignant pheochromocytoma of the anterior mediastinum: PET findings with F-18-FDG and 82Rb J Comp Ass Tomog. 20 312–6 Occurrence Handle1:STN:280:BymC1cvjtVw%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Brink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brink, I., Hoegerle, S., Klisch, J. et al. Imaging of pheochromocytoma and paraganglioma. Familial Cancer 4, 61–68 (2005). https://doi.org/10.1007/s10689-004-2155-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-004-2155-y

Keywords

Navigation