Skip to main content

Advertisement

Log in

Retinal structure in vitamin A deficiency as explored with multimodal imaging

  • Clinical Case Report
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To define the retinal structural abnormalities in a patient with vitamin A deficiency.

Methods

The patient had a complete ophthalmic examination, electroretinography (ERG), short-wave fundus autofluorescence (SW-AF) and spectral domain optical coherence tomography (SD-OCT) imaging. Serum vitamin A levels were measured.

Results

A 63-year-old man with alcoholic cirrhosis, sclerosing cholangitis and chronic pancreatitis experienced blurred vision and nyctalopia for over a year. There was no family history of eye disorders or consanguinity. His best-corrected visual acuity was 20/20 in each eye; color vision as determined with Ishihara color plates was normal in each eye. Anterior segment examination was unremarkable. He was pseudophakic in both eyes. Standard ERGs showed non-detectable rod function, a cone-mediated dark-adapted response to the standard flash and borderline reduced cone function. Serum vitamin A levels were below 0.06 mg/L (normal 0.3–1.2 mg/L). Fundus examination revealed numerous round yellow–white lesions along the superior arcade and nasal to the optic nerve in both eyes. These lesions were hypoautofluorescent on SW-AF. SD-OCT cross sections demonstrated that they were focal disruptions distal to the ellipsoid band of the photoreceptors with hyperreflective images bulging up the ellipsoid and region. The retinal pigment epithelium and the inner retina appeared intact. Limited and gradual vitamin A supplementation for over a month (20 000 IU/day) led to a dramatic improvement in retinal function and to the resolution of the symptoms. The retinal lesions remained unchanged.

Conclusions

Imaging of this patient with nyctalopia and severe rod dysfunction suggests that the retinal white lesions known to occur in vitamin A deficiency localize to the photoreceptor layer, particularly the outer segment. On OCT, they are reminiscent of lesions observed in genetic diseases with retinoid cycle dysfunction and of drusenoid subretinal deposits, an abnormality commonly associated with age-related macular degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Dowling JE, Wald G (1960) The biological function of vitamin A acid. Proc Natl Acad Sci U S A. 46:587–608

    Article  CAS  PubMed  Google Scholar 

  2. Kemp CM, Jacobson SG, Faulkner DJ, Walt RW (1988) Visual function and rhodopsin levels in humans with vitamin A deficiency. Exp Eye Res 46:185–197

    Article  CAS  PubMed  Google Scholar 

  3. Newman NJ, Capone A, Leeper HF, O’Day DG, Mandell B, Lambert SR, Thoft RA (1994) Clinical and subclinical ophthalmic findings with retinol deficiency. Ophthalmology 101:1077–1083

    CAS  PubMed  Google Scholar 

  4. Jacobson SG, Cideciyan AV, Regunath G, Rodriguez FJ, Vandenburgh K, Sheffield VC, Stone EM (1995) Night blindness in Sorsby’s fundus dystrophy reversed by vitamin A. Nat Genet 11:27–32

    Article  CAS  PubMed  Google Scholar 

  5. Hayes KC (1974) Retinal degeneration in monkeys induced by deficiencies of vitamin E or A. Invest Ophthalmol 13:499–510

    CAS  PubMed  Google Scholar 

  6. Herron WL Jr, Riegel BW (1974) Production rate and removal of rod outer segment material in vitamin A deficiency. Invest Ophthalmol Vis Sci 13:46–53

    Google Scholar 

  7. Herron WL Jr, Riegel BW (1974) Vitamin A deficiency-induced “rod thinning” to permanently decrease the production of rod outer segment material. Invest Ophthalmol Vis Sci 13:54–59

    Google Scholar 

  8. Carter-Dawson L, Kuwabara T, O’Brien PJ, Bieri JG (1979) Structural and biochemical changes in vitamin A-deficient rat retinas. Invest Ophthalmol Vis Sci 18:437–446

    CAS  PubMed  Google Scholar 

  9. Hu Y, Chen Y, Moiseyev G, Takahashi Y, Mott R, Ma JX (2011) Comparison of ocular pathologies in vitamin A-deficient mice and RPE65 gene knockout mice. Invest Ophthalmol Vis Sci 52:5507–5514

    Article  CAS  PubMed  Google Scholar 

  10. Fuchs A (1928) Ein fall von weisspunktiertem fundus bei hemeralopie mit xerose. Klin Monatsbl Augenheilkd 81:849–850

    Google Scholar 

  11. Elison JR, Friedman AH, Brodie SE (2004) Acquired subretinal flecks secondary to hypovitaminosis A in a patient with hepatitis C. Doc Ophthalmol 109:279–281

    Article  PubMed  Google Scholar 

  12. Apushkin MA, Fishman GA (2005) Improvement in visual function and fundus findings for a patient with vitamin A-deficient retinopathy. Retina 25:650–652

    Article  PubMed  Google Scholar 

  13. Genead MA, Fishman GA, Lindeman M (2009) Fundus white spots and acquired night blindness due to vitamin A deficiency. Doc Ophthalmol 119:229–233

    Article  PubMed  Google Scholar 

  14. Marmor MF (1977) Fundus albipunctatus: a clinical study of the fundus lesions, the physiologic deficit, and the vitamin A metabolism. Doc Ophthalmol 43:277–302

    Article  CAS  PubMed  Google Scholar 

  15. De Laey JJ (1993) Flecked retina disorders. Bull Soc Belge Ophtalmol 249:11–22

    PubMed  Google Scholar 

  16. Besch D, Jägle H, Scholl HP, Seeliger MW, Zrenner E (2003) Inherited multifocal RPE-diseases: mechanisms for local dysfunction in global retinoid cycle gene defects. Vision Res 43:3095–3108

    Article  CAS  PubMed  Google Scholar 

  17. Lorenz B, Wabbels B, Wegscheider E, Hamel CP, Drexler W, Preising MN (2004) Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65. Ophthalmology 111:1585–1594

    Article  PubMed  Google Scholar 

  18. Schatz P, Preising M, Lorenz B, Sander B, Larsen M, Eckstein C, Rosenberg T (2010) Lack of autofluorescence in fundus albipunctatus associated with mutations in RDH5. Retina 30:1704–1713

    Article  PubMed  Google Scholar 

  19. Schatz P, Preising M, Lorenz B, Sander B, Larsen M, Rosenberg T (2011) Fundus albipunctatus associated with compound heterozygous mutations in RPE65. Ophthalmology 118:888–894

    Article  PubMed  Google Scholar 

  20. Sergouniotis PI, Sohn EH, Li Z, McBain VA, Wright GA, Moore AT, Robson AG, Holder GE, Webster AR (2011) Phenotypic variability in RDH5 retinopathy (Fundus Albipunctatus). Ophthalmology 118:1661–1670

    Article  PubMed  Google Scholar 

  21. Wang NK, Chuang LH, Lai CC, Chou CL, Chu HY, Yeung L, Chen YP, Chen KJ, Wu WC, Chen TL, Chao AN, Hwang YS (2012) Multimodal fundus imaging in fundus albipunctatus with RDH5 mutation: a newly identified compound heterozygous mutation and review of the literature. Doc Ophthalmol 125:51–62

    Article  PubMed  Google Scholar 

  22. Burstedt MS, Golovleva I (2010) Central retinal findings in Bothnia dystrophy caused by RLBP1 sequence variation. Arch Ophthalmol 128:989–995

    Article  CAS  PubMed  Google Scholar 

  23. Sergouniotis PI, Davidson AE, Sehmi K, Webster AR, Robson AG, Moore AT (2011) Mizuo-Nakamura phenomenon in Oguchi disease due to a homozygous nonsense mutation in the SAG gene. Eye 25:1098–1101

    Article  CAS  PubMed  Google Scholar 

  24. Littink KW, van Genderen MM, van Schooneveld MJ, Visser L, Riemslag FC, Keunen JE, Bakker B, Zonneveld MN, den Hollander AI, Cremers FP, van den Born LI (2012) A homozygous frameshift mutation in LRAT causes retinitis punctata albescens. Ophthalmology 119:1899–1906

    Article  PubMed  Google Scholar 

  25. Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF (2010) Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology 117:1775–1781

    Article  PubMed  Google Scholar 

  26. Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF (2013) Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina 33:265–276

    Article  PubMed  Google Scholar 

  27. Rodger FC, Grover AD, Fazal A (1961) Experimental hemeralopia uncomplicated by xerophthalmia in Macacus rhesus. Br J Ophthalmol 45:96–108

    Article  CAS  PubMed  Google Scholar 

  28. Kemp CM, Jacobson SG, Borruat FX, Chaitin MH (1989) Rhodopsin levels and retinal function in cats during recovery from vitamin A deficiency. Exp Eye Res 49:49–65

    Article  CAS  PubMed  Google Scholar 

  29. Katz ML, Eldred GE, Robison WG Jr (1987) Lipofuscin autofluorescence: evidence for vitamin A involvement in the retina. Mech Ageing Dev 39:81–90

    Article  CAS  PubMed  Google Scholar 

  30. Katz ML, Kutryb MJ, Norberg M, Gao CL, White RH, Stark WS (1991) Maintenance of opsin density in photoreceptor outer segments of retinoid-deprived rats. Invest Ophthalmol Vis Sci 32:1968–1980

    CAS  PubMed  Google Scholar 

  31. Katz ML, Norberg M, Stientjes HJ (1992) Reduced phagosomal content of the retinal pigment epithelium in response to retinoid deprivation. Invest Ophthalmol Vis Sci 33:2612–2618

    CAS  PubMed  Google Scholar 

  32. Jacobson SG, Cideciyan AV, Wright E, Wright AF (2001) Phenotypic marker for early disease detection in dominant late-onset retinal degeneration. Invest Ophthalmol Vis Sci 42:1882–1890

    CAS  PubMed  Google Scholar 

  33. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) Standard for clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77

    Article  CAS  PubMed  Google Scholar 

  34. Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31:1609–1619

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Alejandro J. Roman and Beth A. Serpentine for critical help. This work was supported by a grant from Hope for Vision.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas S. Aleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleman, T.S., Garrity, S.T. & Brucker, A.J. Retinal structure in vitamin A deficiency as explored with multimodal imaging. Doc Ophthalmol 127, 239–243 (2013). https://doi.org/10.1007/s10633-013-9403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-013-9403-0

Keywords

Navigation