Skip to main content

Advertisement

Log in

Hepatoprotective and anti-tumor effects of targeting MMP-9 in hepatocellular carcinoma and its relation to vascular invasion markers

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The current study aims to evaluate the hepatoprotective and antitumor efficacy of doxycycline, as an matrix metalloproteases-9 (MMP-9) inhibitor, in an in vivo model of hepatocellular carcinoma (HCC). HCC was induced experimentally by thiocetamide (200 mg/kg) in rats that were treated with doxycycline (5 mg/kg for 16 weeks). Tumor severity was evaluated by measuring α-fetoprotein (AFP) levels, histopathologically by investigating liver sections stained with hematoxylin/eosin and assessing the survival rate. Liver homogenates were used for the measurements of MMP-9, fascin and hepatic heparan sulfate proteoglycan (HSPG) levels. Oxidative stress markers [malonaldehyde (MDA) and glutathione] as well as fibroblast growth factor-2 (FGF-2) gene expression were also among the assessed indicators. HCC in human and animal samples showed significant elevation in the levels of MMP-9 (231.7, 90 %), fascin (33.17, 140 %), as well as FGF-2 gene expression (342 % in animal samples; all respectively), associated with a significant decrease in hepatic HSPG level. Treatment of rats with doxycycline increased the animal survival rate (90 %) and decreased serum AFP level. Moreover, doxycycline ameliorated fibrosis and the induced massive hepatic tissue breakdown. It also restored the integrity of hepatic HSPGs and showed a magnificent inhibitory effect of tumor invasion cascade by significantly reducing the activities of MMP-9 (42 %) and fascin (50 %), as well as reducing the gene expression of FGF-2 (85.7 %). Furthermore, the antioxidant impact of doxycycline was evidenced by the significant elevation in glutathione level and depressing MDA level. To this end, doxycycline, proved promising hepatoprotective and antitumor activity and opens, thereby, a new horizon against vascular migration ability of the tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HCC:

Hepatocellular carcinoma

ECM:

Extracellular matrix

MMPs:

Matrix metalloproteases

HS:

Heparan sulfate

HSPGs:

Heparan sulfate proteoglycans

HSGAGS:

Heparan sulfate glucosaminoglycans

FGF-2:

Fibroblast growth factor-2

ROS:

Review of systems

AFP:

α-Fetoprotein

PBS:

Phosphate buffer saline

MDA:

Malonaldehyde

ALT:

Alanine aminotransferase

cDNA:

Complementary DNA

Ct:

Threshold cycle

ELISA:

Enzyme-linked immunosorbent assay

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

H/E:

Hematoxylin and eosin

IHC:

Immunohistochemistry

i.p.:

Intraperitoneal

MDA:

Malondialdehyde

rpm:

Revolution per min

RT-PCR:

Real-time polymerase chain reaction

SEM:

Standard error of the mean

DAB:

3,3′-Diaminobenzidine

References

  1. He S et al (2013) Study of RNA interference targeting NET-1 combination with sorafenib for hepatocellular carcinoma therapy in vitro and in vivo. Gastroenterol Res Pract 2013:685150

    Article  PubMed Central  PubMed  Google Scholar 

  2. Sun Q et al (2014) Notch1 is a potential therapeutic target for the treatment of human hepatitis B virus X protein-associated hepatocellular carcinoma. Oncol Rep 31(2):933–939

    CAS  PubMed  Google Scholar 

  3. Breuhahn K, Schirmacher P (2008) Reactivation of the insulin-like growth factor-II signaling pathway in human hepatocellular carcinoma. World J Gastroenterol 14(11):1690–1698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Yao DF, Dong ZZ, Yao M (2007) Specific molecular markers in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 6(3):241–247

    CAS  PubMed  Google Scholar 

  5. Abdel-Rahman O (2013) Systemic therapy for hepatocellular carcinoma (HCC): from bench to bedside. J Egypt Natl Cancer Inst 25(4):165–171

    Article  Google Scholar 

  6. Chen K et al (2014) Rationale of personalized immunosuppressive medication for hepatocellular carcinoma patients after liver transplantation. Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc 20(3):261–269

    Google Scholar 

  7. Qin LX, Tang ZY (2002) The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol 8(3):385–392

    CAS  PubMed  Google Scholar 

  8. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693

    Article  CAS  PubMed  Google Scholar 

  9. Yancopoulos GD et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248

    Article  CAS  PubMed  Google Scholar 

  10. Lai JP et al (2008) Heparin-degrading sulfatases in hepatocellular carcinoma: roles in pathogenesis and therapy targets. Future Oncol (Lond Engl) 4(6):803–814

    Article  CAS  Google Scholar 

  11. Segev A, Strauss BH (2004) Novel approaches for the treatment of chronic total coronary occlusions. J Interv Cardiol 17(6):411–416

    Article  PubMed  Google Scholar 

  12. Dong S, Wu XZ (2010) Heparanase and hepatocellular carcinoma: promoter or inhibitor? World J Gastroenterol 16(3):306–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tsunematsu H et al (2012) Fibroblast growth factor-2 enhances NK sensitivity of hepatocellular carcinoma cells. Int J Cancer 130(2):356–364

    Article  CAS  PubMed  Google Scholar 

  14. Ornitz DM et al (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271(25):15292–15297

    Article  CAS  PubMed  Google Scholar 

  15. Wang L et al (2012) A novel monoclonal antibody to fibroblast growth factor 2 effectively inhibits growth of hepatocellular carcinoma xenografts. Mol Cancer Ther 11(4):864–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4(8):617–629

    Article  CAS  PubMed  Google Scholar 

  17. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    Article  CAS  PubMed  Google Scholar 

  19. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kim KR et al (2011) The role of serum response factor in hepatocellular carcinoma: an association with matrix metalloproteinase. Oncol Rep 26(6):1567–1572

    CAS  PubMed  Google Scholar 

  21. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34

    Article  CAS  PubMed  Google Scholar 

  22. Hidalgo M, Eckhardt SG (2001) Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 93(3):178–193

    Article  CAS  PubMed  Google Scholar 

  23. Tae HJ et al (2012) Chronic treatment with a broad-spectrum metalloproteinase inhibitor, doxycycline, prevents the development of spontaneous aortic lesions in a mouse model of vascular Ehlers–Danlos syndrome. J Pharmacol Exp Ther 343(1):246–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nowak E et al (2013) MMP-9 directed shRNAs as relevant inhibitors of matrix metalloproteinase 9 activity and signaling. Postepy Hig Med Dosw (Online) 67:742–749

    Article  Google Scholar 

  25. Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012) Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 181(6):1895–1899

    Article  PubMed Central  PubMed  Google Scholar 

  26. Yamashiro S, et al. (1998) Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility of epithelial cells. Molecular biology of the cell 9 5): 993-1006

  27. Jayo A, Parsons M (2010) Fascin: a key regulator of cytoskeletal dynamics. Int J Biochem Cell Biol 42(10):1614–1617

    Article  CAS  PubMed  Google Scholar 

  28. Huang X et al (2012) Fascin and cortactin expression is correlated with a poor prognosis in hepatocellular carcinoma. Eur J Gastroenterol Hepatol 24(6):633–639

    Article  CAS  PubMed  Google Scholar 

  29. Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54(3):176–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cross CE et al (1998) Oxidative stress and antioxidants at biosurfaces: plants, skin, and respiratory tract surfaces. Environ Health Perspect 106(Suppl 5):1241–1251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tayel A et al (2014) Suramin inhibits hepatic tissue damage in hepatocellular carcinoma through deactivation of heparanase enzyme. Eur J Pharmacol 728:151–160

    Article  CAS  PubMed  Google Scholar 

  32. Darweish MM et al (2014) Chemopreventive and hepatoprotective effects of Epigallocatechin-gallate against hepatocellular carcinoma: role of heparan sulfate proteoglycans pathway. J Pharm Pharmacol 66(7):1032–1045

    Article  CAS  PubMed  Google Scholar 

  33. Zaghloul RA et al (2015) Evaluation of antiglypican-3 therapy as a promising target for amelioration of hepatic tissue damage in hepatocellular carcinoma. Eur J Pharmacol 746:353–362

    Article  CAS  PubMed  Google Scholar 

  34. Brookes ZL, Reilly CS, Brown NJ (2004) Differential effects of propofol, ketamine, and thiopental anaesthesia on the skeletal muscle microcirculation of normotensive and hypertensive rats in vivo. Br J Anaesth 93(2):249–256

    Article  CAS  PubMed  Google Scholar 

  35. Brookes ZL et al (2007) Proinflammatory and vasodilator effects of nociceptin/orphanin FQ in the rat mesenteric microcirculation are mediated by histamine. Am J Physiol Heart Circ Physiol 293(5):H2977–H2985

    Article  CAS  PubMed  Google Scholar 

  36. Draper HH, McGirr LG, Hadley M (1986) The metabolism of malondialdehyde. Lipids 21(4):305–307

    Article  CAS  PubMed  Google Scholar 

  37. Eyer P, Podhradsky D (1986) Evaluation of the micromethod for determination of glutathione using enzymatic cycling and Ellman’s reagent. Anal Biochem 153(1):57–66

    Article  CAS  PubMed  Google Scholar 

  38. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem/FEBS 47(3):469–474

    Article  CAS  Google Scholar 

  39. Cohen G, Dembiec D, Marcus J (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 34:30–38

    Article  CAS  PubMed  Google Scholar 

  40. Hadler-Olsen E, Winberg JO, Uhlin-Hansen L (2013) Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol J Int Soc Oncodev Biol Med 34(4):2041–2051

    Article  CAS  Google Scholar 

  41. Toyoshima M, Nakajima M (1999) Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 274(34):24153–24160

    Article  CAS  PubMed  Google Scholar 

  42. Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays News Reviews Mol Cell Dev Biol 22(2):108–112

    Article  CAS  Google Scholar 

  43. Harmer NJ (2006) Insights into the role of heparan sulphate in fibroblast growth factor signalling. Biochem Soc Trans 34(Pt 3):442–445

    CAS  PubMed  Google Scholar 

  44. Powell WC, Matrisian LM (1996) Complex roles of matrix metalloproteinases in tumor progression. Curr Top Microbiol Immunol 213(Pt 1):1–21

    CAS  PubMed  Google Scholar 

  45. Goncalves JL et al (2012) Pro-inflammatory effects of the mushroom Agaricus blazei and its consequences on atherosclerosis development. Eur J Nutr 51(8):927–937

    Article  CAS  PubMed  Google Scholar 

  46. Ordonez R et al (2014) Inhibition of matrix metalloproteinase-9 and nuclear factor kappa B contribute to melatonin prevention of motility and invasiveness in HepG2 liver cancer cells. J Pineal Res 56(1):20–30

    Article  CAS  PubMed  Google Scholar 

  47. Lou L et al (2013) Enhancement of invasion of hepatocellular carcinoma cells through lysophosphatidic acid receptor. J Int Med Res 41(1):55–63

    Article  CAS  PubMed  Google Scholar 

  48. Roomi MW et al (2013) In vitro modulation of MMP-2 and MMP-9 in adult human sarcoma cell lines by cytokines, inducers and inhibitors. Int J Oncol 43(6):1787–1798

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Carey DJ (1997) Syndecans: multifunctional cell-surface co-receptors. Biochem J 327(Pt 1):1–16

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Bernfield M et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  CAS  PubMed  Google Scholar 

  51. Purushothaman A et al (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283(47):32628–32636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Chen L, Sanderson RD (2009) Heparanase regulates levels of syndecan-1 in the nucleus. PloS One 4(3):e4947

    Article  PubMed Central  PubMed  Google Scholar 

  53. Yang Y et al (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 100(2):610–617

    Article  CAS  PubMed  Google Scholar 

  54. Li Q et al (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111(5):635–646

    Article  CAS  PubMed  Google Scholar 

  55. Yang X et al (2009) Signal transducers and activators of transcription mediate fibroblast growth factor-induced vascular endothelial morphogenesis. Cancer Res 69(4):1668–1677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Sharma B et al (1998) Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J Clin Investig 102(8):1599–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Kanazawa S et al (2001) VEGF, basic-FGF, and TGF-beta in Crohn’s disease and ulcerative colitis: a novel mechanism of chronic intestinal inflammation. Am J Gastroenterol 96(3):822–828

    CAS  PubMed  Google Scholar 

  58. Tassi E et al (2011) Impact of fibroblast growth factor-binding protein-1 expression on angiogenesis and wound healing. Am J Pathol 179(5):2220–2232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Lin ZY, Chuang WL (2013) Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts. Kaohsiung J Med Sci 29(6):312–318

    Article  CAS  PubMed  Google Scholar 

  60. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  CAS  PubMed  Google Scholar 

  61. Hashimoto Y et al (2006) Prognostic significance of fascin expression in advanced colorectal cancer: an immunohistochemical study of colorectal adenomas and adenocarcinomas. BMC Cancer 6:241

    Article  PubMed Central  PubMed  Google Scholar 

  62. Vignjevic D et al (2007) Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res 67(14):6844–6853

    Article  CAS  PubMed  Google Scholar 

  63. Hayashi Y, Osanai M, Lee GH (2011) Fascin-1 expression correlates with repression of E-cadherin expression in hepatocellular carcinoma cells and augments their invasiveness in combination with matrix metalloproteinases. Cancer Sci 102(6):1228–1235

    Article  CAS  PubMed  Google Scholar 

  64. Lee TK et al (2007) Fascin over-expression is associated with aggressiveness of oral squamous cell carcinoma. Cancer Lett 254(2):308–315

    Article  CAS  PubMed  Google Scholar 

  65. Zhao Q et al (2010) Phosphorylation of fascin decreases the risk of poor survival in patients with esophageal squamous cell carcinoma. J Histochem Cytochem Off J Histochem Soc 58(11):979–988

    Article  CAS  Google Scholar 

  66. Oh SY et al (2012) Prognostic impact of fascin-1 expression is more significant in advanced colorectal cancer. J Surg Res 172(1):102–108

    Article  CAS  PubMed  Google Scholar 

  67. Griffin MO et al (2010) Tetracyclines: a pleiotropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol 299(3):C539–C548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Peterson JT (2004) Matrix metalloproteinase inhibitor development and the remodeling of drug discovery. Heart Fail Rev 9(1):63–79

    Article  CAS  PubMed  Google Scholar 

  69. Seftor RE et al (1998) Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clin Exp Metastasis 16(3):217–225

    Article  CAS  PubMed  Google Scholar 

  70. Lokeshwar BL et al (2002) Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int J Cancer 98(2):297–309

    Article  CAS  PubMed  Google Scholar 

  71. Ryan ME, et al. (2001) Excessive matrix metalloproteinase activity in diabetes: inhibition by tetracycline analogues with zinc reactivity. Current medicinal chemistry 8 3): 305-16

  72. Roomi MW et al (2014) In vitro modulation of MMP-2 and MMP-9 in pediatric human sarcoma cell lines by cytokines, inducers and inhibitors. Int J Oncol 44(1):27–34

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Sun B et al (2007) Doxycycline influences microcirculation patterns in B16 melanoma. Exp Biol Med (Maywood, NJ) 232(10):1300–1307

    Article  CAS  Google Scholar 

  74. Krylova IV, Shalaev VA, Isakov SV (1991) Individual prognosis of chronic B-lymphoid leukemia course. Gematol transfuziol 36(10):19–21

    CAS  PubMed  Google Scholar 

  75. Wang CY et al (2013) Activation of PPARgamma is required for hydroxysafflor yellow A of Carthamus tinctorius to attenuate hepatic fibrosis induced by oxidative stress. Phytomed Int J Phytother Phytopharmacol 20(7):592–599

    Article  CAS  Google Scholar 

  76. Calvisi DF et al (2005) Activation of the canonical Wnt/beta-catenin pathway confers growth advantages in c-Myc/E2F1 transgenic mouse model of liver cancer. J Hepatol 42(6):842–849

    Article  CAS  PubMed  Google Scholar 

  77. Li T et al (2013) Glutathione S-transferase P1 correlated with oxidative stress in hepatocellular carcinoma. Int J Med Sci 10(6):683–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Weiss SJ et al (1985) Oxidative autoactivation of latent collagenase by human neutrophils. Science (New York, NY) 227(4688):747–749

    Article  CAS  Google Scholar 

  79. Senturker S et al (1997) Oxidative DNA base damage and antioxidant enzyme levels in childhood acute lymphoblastic leukemia. FEBS Lett 416(3):286–290

    Article  CAS  PubMed  Google Scholar 

  80. Liu DY et al (2003) Expression of telomerase activity and oxidative stress in human hepatocellular carcinoma with cirrhosis. World J Gastroenterol 9(8):1859–1862

    CAS  PubMed  Google Scholar 

  81. Yagan A, Kesim S, Liman N (2014) Effect of low-dose doxycycline on serum oxidative status, gingival antioxidant levels, and alveolar bone loss in experimental periodontitis in rats. J Periodontol 85(3):478–489

    Article  CAS  PubMed  Google Scholar 

  82. Creemers EE et al (2001) Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 89(3):201–210

    Article  CAS  PubMed  Google Scholar 

  83. Park JL, Lucchesi BR (1999) Mechanisms of myocardial reperfusion injury. Ann Thorac Surg 68(5):1905–1912

    Article  CAS  PubMed  Google Scholar 

  84. Kraus RL et al (2005) Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J Neurochem 94(3):819–827

    Article  CAS  PubMed  Google Scholar 

  85. Hashimoto Y, Parsons M, Adams JC (2007) Dual actin-bundling and protein kinase C-binding activities of fascin regulate carcinoma cell migration downstream of Rac and contribute to metastasis. Mol Biol Cell 18(11):4591–4602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. F. Elewa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elewa, M.A.F., Al-Gayyar, M.M., Schaalan, M.F. et al. Hepatoprotective and anti-tumor effects of targeting MMP-9 in hepatocellular carcinoma and its relation to vascular invasion markers. Clin Exp Metastasis 32, 479–493 (2015). https://doi.org/10.1007/s10585-015-9721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9721-6

Keywords

Navigation