Skip to main content
Log in

Levosimendan Improves Renal Function in Patients with Acute Decompensated Heart Failure: Comparison with Dobutamine

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background

Levosimendan is a relatively new cardiac inotropic agent with calcium sensitizing activity. This study was conducted to investigate the effects of levosimendan (L) and dobutamine (D) on renal function in patients hospitalized with decompensated heart failure (HF).

Method

The present study included 88 consecutive patients hospitalized with acutely decompensated HF (New York Heart Association (NYHA) Class 3–4) requiring inotropic therapy. Patients were randomized 2:1 to either L or D for intravenous inotropic support. Diuretic therapy was kept constant during infusions. Renal function values, including serum creatinine (CR), blood urea nitrogen, 24-h urinary output levels and calculated glomerular filtration rate (GFR) were measured just prior to and 24 h after the infusions in all patients, and 48 and 72 h after the infusions in every second patient in both groups. The pre and post-infusion values of renal function and left ventricular ejection fraction (LVEF) were evaluated.

Results

LVEF increased significantly in both groups. Those in L showed a significant improvement in calculated GFR after 24 h, whereas those in D showed no significant change (median in change in L:+15.3%, median change in D: −1.33%). Furthermore, in the L group a significant improvement was observed in calculated GFR after 72 h compared to baseline levels, whereas in D no significant change (median change in L:+45.45%, median change in D: +0.09%) was seen. Both agents improved 24-h urinary output.

Conclusion

Levosimendan seems to provide beneficial effects in terms of improvement in renal function compared to dobutamine in patients with heart failure who require inotropic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ruilope LM, van Veldhuisen DJ, Ritz E, Luscher TF. Renal function: the Cinderella of cardiovascular risk profile. J Am Coll Cardiol. 2001;38:1782.

    Article  PubMed  CAS  Google Scholar 

  2. Pollesello P, Mebazaa A. ATP-dependent potassium channels as a key target for the treatment of myocardial and vascular dysfunction. Curr Opin Crit Care. 2004;10:436–41.

    Article  PubMed  Google Scholar 

  3. Tachibana H, Cheng HJ, Ukai T, Igawa A, Zhang ZS, Little WC, Cheng CP. Levosimendan improves LV systolic and diastolic performance at rest and during exercise after heart failure. Am J Physiol. 2005;288:H914–22.

    CAS  Google Scholar 

  4. Levey AS, Bosch JP, Lewis JB, Greene T, Rodgers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130:461–70.

    PubMed  CAS  Google Scholar 

  5. Benedict CR, Rose JA. Arterial norepinephrine changes in patients with septic shock. Circ Shock. 1992;38:165–72.

    PubMed  CAS  Google Scholar 

  6. Boim MA, Draibe SA, Ramos OL, Ajzen H, Ulmann A, Schor N. Glomerular hemodynamics during abortion induced by RU 486 and sepsis in rats. Braz J Med Biol Res. 1994;27:1431–44.

    PubMed  CAS  Google Scholar 

  7. Lugon JR, Boim MA, Ajzen H, Schor N. Renal function and glomerular hemodynamics in male endotoxemic rats. Kidney Int. 1989;36:570–75.

    Article  PubMed  CAS  Google Scholar 

  8. Schrier RW, Wang W. Acute renal failure and sepsis. N Eng J Med. 2004;351:159–69.

    Article  CAS  Google Scholar 

  9. Goldfarb M, Abassi Z, Rosen S, Shina A, Brezis M, Heyman SN. Compensated heart failure predisposes to outer medullary tubular injury: studies in rats. Kidney Int. 2001;60:607–13.

    Article  PubMed  CAS  Google Scholar 

  10. Tiwari MM, Brock RW, Megyesi JK, Kaushal GP, Mayeux PR. Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure. Role of nitric oxide and caspases. Am J Physiol Renal Physiol. 2005;289:F1324–32.

    Article  PubMed  CAS  Google Scholar 

  11. Wang le F, Patel M, Razavi HM, Weicker S, Joseph MG, McCormack DG, Mehta S. Role of inducible nitric oxide synthase in pulmonary microvascular protein leak in murine sepsis. Am J Resp Critical Care Med. 2002;165:1634–39.

    Article  Google Scholar 

  12. Sorsa T, Heikkinen S, Abbott MB, Abusamhadneh E, Laakso T, Tilgman C, Serimaa R, Annila A, Rosevear PR, Drakenberg T, Pollesello P, Kilpelainen I. Binding of levosimendan, a calcium sensitizer, to cardiac troponin C. J Biol Chem. 2001;276:9337–43.

    Article  PubMed  CAS  Google Scholar 

  13. Toivonen L, Viitasalo M, Sundberg S, Akkila J, Lehtonen L. Electrophysiologic effects of a calcium sensitizer inotrope levosimendan administered intravenously in patients with normal cardiac function. J Cardiovasc Pharmacol. 2000;35:664–9.

    Article  PubMed  CAS  Google Scholar 

  14. Pataricza J, Hohn J, Petri A, Balogh A, Papp JG. Comparison of the vasorelaxing effect of cromakalim and the new inodilator, levosimendan, in human isolated portal vein. J Pharmacy & Pharmacol. 2000;52:213–17.

    Article  CAS  Google Scholar 

  15. Pataricza J, Krassoi I, Hohn J, Kun A, Papp JG. Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery. Cardiovasc Drugs Ther. 2003;17:115–21.

    Article  PubMed  CAS  Google Scholar 

  16. Paraskevaidis IA, Parissis JT, Kremastinos D. Anti-inflammatory and anti-apoptotic effects of levosimendan in decompansated heart failure: a novel mechanism of drug-induced improvement in contractile performance of the failing heart. Curr Med Chem Cardiovasc Hematol Agents. 2005;3:243–7.

    Article  PubMed  CAS  Google Scholar 

  17. Parissis JT, Farmakis D, Kremastinos DT. Anti-inflammatory effects of levosimendan in decompensated heart failure: impact on weight loss and anemia. Am J Cardiol. 2005;95:923–4.

    Article  PubMed  CAS  Google Scholar 

  18. Zager RA, Johnson AC, Lund S, Hanson SY, Abrass CK. Levosimendan protects against experimental endotoxemic acute renal failure. Am J Physiol Renal Physiol. 2006;290:F1453–62.

    Article  PubMed  CAS  Google Scholar 

  19. Puttonen J, Kantele S, Kivikko M, Hakkinen S, Harjola VP, Koskinen P, Pentikainen PJ. Effect of severe renal failure and haemodialysis on the pharmacokinetics of levosimendan and its metabolites. Clin Pharmacokinet. 2007;46:235–46.

    Article  PubMed  CAS  Google Scholar 

  20. Raftopoulos SC. Levosimendan following coronary artery bypass grafting in a patient with end-stage renal failure: a case report. Crit Care Resusc. 2004;6:109–12.

    PubMed  CAS  Google Scholar 

  21. Westman L, Järnberg PO. Effects of dobutamine on renal function in normal man. Acta Anaesthesiol Scand. 1986;30:72–5.

    Article  PubMed  CAS  Google Scholar 

  22. Kurien S, Warfield KT, Wood CM, Miller WL. Effects of standard heart failure therapy and concomitant treatment with intravenous furosemide or inotropes (dobutamine, dopamine, and/or milrinone) on renal function and mortality in patients treated with nesiritide. Am J Cardiol. 2006;98:1627–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Birhan Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, M.B., Yalta, K., Yontar, C. et al. Levosimendan Improves Renal Function in Patients with Acute Decompensated Heart Failure: Comparison with Dobutamine. Cardiovasc Drugs Ther 21, 431–435 (2007). https://doi.org/10.1007/s10557-007-6066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-007-6066-7

Key words

Navigation