Skip to main content

Advertisement

Log in

From CT to artificial intelligence for complex assessment of plaque-associated risk

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The recent technological developments in the field of cardiac imaging have established coronary computed tomography angiography (CCTA) as a first-line diagnostic tool in patients with suspected coronary artery disease (CAD). CCTA offers robust information on the overall coronary circulation and luminal stenosis, also providing the ability to assess the composition, morphology, and vulnerability of atherosclerotic plaques. In addition, the perivascular adipose tissue (PVAT) has recently emerged as a marker of increased cardiovascular risk. The addition of PVAT quantification to standard CCTA imaging may provide the ability to extract information on local inflammation, for an individualized approach in coronary risk stratification. The development of image post-processing tools over the past several years allowed CCTA to provide a significant amount of data that can be incorporated into machine learning (ML) applications. ML algorithms that use radiomic features extracted from CCTA are still at an early stage. However, the recent development of artificial intelligence will probably bring major changes in the way we integrate clinical, biological, and imaging information, for a complex risk stratification and individualized therapeutic decision making in patients with CAD. This review aims to present the current evidence on the complex role of CCTA in the detection and quantification of vulnerable plaques and the associated coronary inflammation, also describing the most recent developments in the radiomics-based machine learning approach for complex assessment of plaque-associated risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benjamin EJ, Virani SS, Callaway CW, American Heart Association Council on Epidemiology, and Prevention Statistics Committee, and Stroke Statistics Subcommittee et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492. https://doi.org/10.1161/CIR.0000000000000558

    Article  PubMed  Google Scholar 

  2. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB Sr, Gibbons R, Greenland P, Lackland DT, Levy D, O'Donnell CJ, Robinson JG, Schwartz JS, Shero ST, Smith SC Jr, Sorlie P, Stone NJ, Wilson PWF (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63(25 pt B):2935–2959. https://doi.org/10.1016/j.jacc.2013.11.005

    Article  PubMed  Google Scholar 

  3. Knuuti J, Wijns W, Saraste A, ESC Scientific Document Group et al (2020) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41(3):407–477. https://doi.org/10.1093/eurheartj/ehz425

    Article  PubMed  Google Scholar 

  4. Moss AJ, Williams MC, Newby DE, Nicol ED (2017) The updated NICE guidelines: cardiac CT as the first-line test for coronary artery disease. Curr Cardiovasc Imaging Rep 10(5):15. https://doi.org/10.1007/s12410-017-9412-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rodriguez-Granillo GA, Carrascosa P, Bruining N, Waksman R, Garcia-Garcia HM (2016) Defining the non-vulnerable and vulnerable patients with computed tomography coronary angiography: evaluation of atherosclerotic plaque burden and composition. Eur Heart J Cardiovasc Imaging 17(5):481–491. https://doi.org/10.1093/ehjci/jew012

    Article  PubMed  Google Scholar 

  6. van der Giessen AG, Toepker MH, Donelly PM, Bamberg F, Schlett CL, Raffle C, Irlbeck T, Lee H, van Walsum T, Maurovich-Horvat P, Gijsen FJ, Wentzel JJ, Hoffmann U (2010) Reproducibility, accuracy, and predictors of accuracy for the detection of coronary atherosclerotic plaque composition by computed tomography: an ex vivo comparison to intravascular ultrasound. Invest Radiol 45(11):693–701. https://doi.org/10.1097/RLI.0b013e3181e0a541

    Article  PubMed  Google Scholar 

  7. Cheng JM, Garcia-Garcia HM, de Boer SP, Kardys I, Heo JH, Akkerhuis KM, Oemrawsingh RM, van Domburg RT, Ligthart J, Witberg KT, Regar E, Serruys PW, van Geuns RJ, Boersma E (2014) In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J 35(10):639–647. https://doi.org/10.1093/eurheartj/eht484

    Article  PubMed  Google Scholar 

  8. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE (2003) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107(1):113–119. https://doi.org/10.1161/01.cir.0000044384.41037.43

    Article  PubMed  Google Scholar 

  9. Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V (2015) OCT for the identification of vulnerable plaque in acute coronary syndrome. JACC Cardiovasc Imaging 8(2):198–209. https://doi.org/10.1016/j.jcmg.2014.12.005

    Article  PubMed  Google Scholar 

  10. Antoniades C, Kotanidis CP, Berman DS (2019) State-of-the-art review. article Atherosclerosis affecting fat: What can we learn by imaging perivascular adipose tissue? J Cardiovasc Comput Tomogr 13(5):288–296. https://doi.org/10.1016/j.jcct.2019.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  11. Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, Margaritis M, Shirodaria C, Kampoli AM, Akoumianakis I, Petrou M, Sayeed R, Krasopoulos G, Psarros C, Ciccone P, Brophy CM, Digby J, Kelion A, Uberoi R, Anthony S, Alexopoulos N, Tousoulis D, Achenbach S, Neubauer S, Channon KM, Antoniades C (2017) Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aal2658

    Article  PubMed  Google Scholar 

  12. Oikonomou EK, West HW, Antoniades C (2019) Cardiac computed tomography: assessment of coronary inflammation and other plaque features. Arterioscler Thromb Vasc Biol 39(11):2207–2219. https://doi.org/10.1161/ATVBAHA.119.312899

    Article  CAS  PubMed  Google Scholar 

  13. Kolossváry M, De Cecco CN, Feuchtner G, Maurovich-Horvat P (2019) Advanced atherosclerosis imaging by CT: radiomics, machine learning and deep learning. J Cardiovasc Comput Tomogr 13(5):274–280. https://doi.org/10.1016/j.jcct.2019.04.007

    Article  PubMed  Google Scholar 

  14. Stefanadis C, Antoniou CK, Tsiachris D, Petri P (2017) Coronary atherosclerotic vulnerable plaque: current perspectives. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.005543

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kolossváry M, Szilveszter B, Merkely B, Maurovich-Horvat P (2017) Plaque imaging with CT-a comprehensive review on coronary CT angiography based risk assessment. Cardiovasc Diagn Ther 7(5):489–506. https://doi.org/10.21037/cdt.2016.11.06

    Article  PubMed  PubMed Central  Google Scholar 

  16. Conte E, Annoni A, Pontone G, Mushtaq S, Guglielmo M, Baggiano A, Volpato V, Agalbato C, Bonomi A, Veglia F, Formenti A, Fiorentini C, Bartorelli AL, Pepi M, Andreini D (2017) Evaluation of coronary plaque characteristics with coronary computed tomography angiography in patients with non-obstructive coronary artery disease: a long-term follow-up study. Eur Heart J Cardiovasc Imaging 18(10):1170–1178. https://doi.org/10.1093/ehjci/jew200

    Article  PubMed  Google Scholar 

  17. Otsuka K, Fukuda S, Tanaka A, Nakanishi K, Taguchi H, Yoshikawa J, Shimada K, Yoshiyama M (2013) Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging 6(4):448–457. https://doi.org/10.1016/j.jcmg.2012.09.016

    Article  PubMed  Google Scholar 

  18. Kröner ES, van Velzen JE, Boogers MJ, Siebelink HM, Schalij MJ, Kroft LJ, de Roos A, van der Wall EE, Jukema JW, Reiber JH, Schuijf JD, Bax JJ (2011) Positive remodeling on coronary computed tomography as a marker for plaque vulnerability on virtual histology intravascular ultrasound. Am J Cardiol 107(12):1725–1729. https://doi.org/10.1016/j.amjcard.2011.02.337

    Article  PubMed  Google Scholar 

  19. Gauss S, Achenbach S, Pflederer T, Schuhbäck A, Daniel WG, Marwan M (2011) Assessment of coronary artery remodelling by dual-source CT: a head-to-head comparison with intravascular ultrasound. Heart 97(12):991–997. https://doi.org/10.1136/hrt.2011.223024

    Article  PubMed  Google Scholar 

  20. Greenland P, Blaha MJ, Budoff MJ, Erbel R, Watson KE (2018) Coronary calcium score and cardiovascular risk. J Am Coll Cardiol 72(4):434–447. https://doi.org/10.1016/j.jacc.2018.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47(8 Suppl):C13–C18. https://doi.org/10.1016/j.jacc.2005.10.065

    Article  CAS  PubMed  Google Scholar 

  22. Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, Finn AV, Virmani R (2001) The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 16(5):285–292. https://doi.org/10.1097/00001573-200109000-00006

    Article  CAS  PubMed  Google Scholar 

  23. Hadamitzky M, Achenbach S, Al-Mallah M, Berman D, Budoff M, Cademartiri F, Callister T, Chang HJ, Cheng V, Chinnaiyan K, Chow BJ, Cury R, Delago A, Dunning A, Feuchtner G, Gomez M, Kaufmann P, Kim YJ, Leipsic J, Lin FY, Maffei E, Min JK, Raff G, Shaw LJ, Villines TC, Hausleiter J, CONFIRM Investigators (2013) Optimized prognostic score for coronary computed tomographic angiography: results from the CONFIRM registry (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter Registry). J Am Coll Cardiol 62(5):468–476. https://doi.org/10.1016/j.jacc.2013.04.064

    Article  PubMed  Google Scholar 

  24. Hadamitzky M, Täubert S, Deseive S, Byrne RA, Martinoff S, Schömig A, Hausleiter J (2013) Prognostic value of coronary computed tomography angiography during 5 years of follow-up in patients with suspected coronary artery disease. Eur Heart J 34(42):3277–3285. https://doi.org/10.1093/eurheartj/eht293

    Article  PubMed  Google Scholar 

  25. Dedic A, Kurata A, Lubbers M, Meijboom WB, van Dalen BM, Snelder S, Korbee R, Moelker A, Ouhlous M, van Domburg R, de Feijter PJ, Nieman K (2014) Prognostic implications of non-culprit plaques in acute coronary syndrome: non-invasive assessment with coronary CT angiography. Eur Heart J Cardiovasc Imaging 15(11):1231–1237. https://doi.org/10.1093/ehjci/jeu111

    Article  PubMed  Google Scholar 

  26. Nance JW Jr, Schlett CL, Schoepf UJ, Oberoi S, Leisy HB, Barraza JM Jr, Headden GF, Nikolaou K, Bamberg F (2012) Incremental prognostic value of different components of coronary atherosclerotic plaque at cardiac CT angiography beyond coronary calcification in patients with acute chest pain. Radiology 264(3):679–690. https://doi.org/10.1148/radiol.12112350

    Article  PubMed  Google Scholar 

  27. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah MH, Berman DS, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng V, Chinnaiyan KM, Chow B, Delago A, Hadamitzky M, Hausleiter J, Karlsberg RP, Kaufmann P, Maffei E, Nasir K, Pencina MJ, Raff GL, Shaw LJ, Villines TC (2011) Rationale and design of the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) Registry. J Cardiovasc Comput Tomogr 5(2):84–92. https://doi.org/10.1016/j.jcct.2011.01.007

    Article  PubMed  Google Scholar 

  28. Criqui M, Denenberg J, Ix J, McClelland R, Wassel C, Rifkin D, Carr J (2014) Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA 311(3):271–278. https://doi.org/10.1001/jama.2013.282535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Criqui M, Knox JB, Denenburg J, Forbang NI, McClelland R, Novotny TE, Sandfort V, Waalen J, Blaha M, Allison M (2017) Coronary artery calcium volume and density potential interactions and overall predictive value: the Multi-Ethnic Study of Atherosclerosis. JACC: Cardiovasc Imaging 10(8):845–954. https://doi.org/10.1016/j.jcmg.2017.04.018

    Article  Google Scholar 

  30. van Rosendael AR, Narula J, Lin FY, van den Hoogen I, Gianni U et al (2020) Association of high-density calcified 1K plaque with risk of acute coronary syndrome. JAMA Cardiol 5(3):282–290. https://doi.org/10.1001/jamacardio.2019.5315

    Article  PubMed  PubMed Central  Google Scholar 

  31. Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R (2001) Pathophysiology of calcium deposition in coronary arteries. Herz 26(4):239–244. https://doi.org/10.1007/pl00002026

    Article  CAS  PubMed  Google Scholar 

  32. Maurovich-Horvath P, Ferencik M, Voros S, Merkely B, Hoffman U (2014) Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol 11(7):390–402. https://doi.org/10.1038/nrcardio.2014.60

    Article  Google Scholar 

  33. Mauriello A, Servadei F, Zoccai GB, Giacobbi E, Anemona L, Bonanno E, Casella S (2013) Coronary calcification identifies the vulnerable patient rather than the vulnerable plaque. Atherosclerosis 229(1):124–129. https://doi.org/10.1016/j.atherosclerosis.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  34. van Velzen JE, de Graaf FR, de Graaf MA, Schuijf JD, Kroft LJ, de Roos A, Reiber JH, Bax JJ, Jukema JW, Boersma E, Schalij MJ, van der Wall EE (2011) Comprehensive assessment of spotty calcifications on computed tomography angiography: comparison to plaque characteristics on intravascular ultrasound with radiofrequency backscatter analysis. J Nucl Cardiol 18(5):893–903. https://doi.org/10.1007/s12350-011-9428-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mizukoshi M, Kubo T, Takarada S, Kitabata H, Ino Y, Tanimoto T, Komukai K, Tanaka A, Imanishi T, Akasaka T (2013) Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol 112(1):34–40. https://doi.org/10.1016/j.amjcard.2013.02.048

    Article  CAS  PubMed  Google Scholar 

  36. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50(4):319–326. https://doi.org/10.1016/j.jacc.2007.03.044

    Article  PubMed  Google Scholar 

  37. Ozaki Y, Okumura M, Ismail TF, Motoyama S, Naruse H, Hattori K, Kawai H, Sarai M, Takagi Y, Ishii J, Anno H, Virmani R, Serruys PW, Narula J (2011) Coronary CT angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. Eur Heart J 32(22):2814–2823. https://doi.org/10.1093/eurheartj/ehr189

    Article  PubMed  Google Scholar 

  38. Kitagawa T, Yamamoto H, Horiguchi J, Ohhashi N, Tadehara F, Shokawa T, Dohi Y, Kunita E, Utsunomiya H, Kohno N, Kihara Y (2009) Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging 2(2):153–160. https://doi.org/10.1016/j.jcmg.2008.09.015

    Article  PubMed  Google Scholar 

  39. Benedek T, Jako B, Benedek I (2014) Plaque quantification by coronary CT and intravascular ultrasound identifies a low CT density core as a marker of plaque instability in acute coronary syndromes. Int Heart J 55(1):22–28. https://doi.org/10.1536/ihj.13-213

    Article  PubMed  Google Scholar 

  40. Deseive S, Straub R, Kupke M, Broersen A, Kitslaar PH, Massberg S, Hadamitzky M, Hausleiter J (2018) Quantification of coronary low-attenuation plaque volume for long-term prediction of cardiac events and reclassification of patients. J Cardiovasc Comput Tomogr 12(2):118–124. https://doi.org/10.1016/j.jcct.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  41. Maurovich-Horvat P, Schlett CL, Alkadhi H, Nakano M, Otsuka F, Stolzmann P, Scheffel H, Ferencik M, Kriegel MF, Seifarth H, Virmani R, Hoffmann U (2012) The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging 5(12):1243–1252. https://doi.org/10.1016/j.jcmg.2012.03.019

    Article  PubMed  Google Scholar 

  42. Kashiwagi M, Tanaka A, Shimada K, Kitabata H, Komukai K, Nishiguchi T, Ozaki Y, Tanimoto T, Kubo T, Hirata K, Mizukoshi M, Akasaka T (2013) Distribution, frequency and clinical implications of napkin-ring sign assessed by multidetector computed tomography. J Cardiol 61(6):399–403. https://doi.org/10.1016/j.jjcc.2013.01.004

    Article  PubMed  Google Scholar 

  43. Feuchtner G, Kerber J, Burghard P, Dichtl W, Friedrich G, Bonaros N, Plank F (2017) The high-risk criteria low-attenuation plaque <60 HU and the napkin-ring sign are the most powerful predictors of MACE: a long-term follow-up study. Eur Heart J Cardiovasc Imaging 18(7):772–779. https://doi.org/10.1093/ehjci/jew167

    Article  PubMed  Google Scholar 

  44. Varnava AM, Mills PG, Davies MJ (2002) Relationship between coronary artery remodeling and plaque vulnerability. Circulation 105(8):939–943. https://doi.org/10.1161/hc0802.104327

    Article  PubMed  Google Scholar 

  45. Achenbach S, Ropers D, Hoffmann U, MacNeill B, Baum U, Pohle K, Brady TJ, Pomerantsev E, Ludwig J, Flachskampf FA, Wicky S, Jang IK, Daniel WG (2004) Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 43(5):842–847. https://doi.org/10.1016/j.jacc.2003.09.053

    Article  PubMed  Google Scholar 

  46. Hoffmann U, Ferencik M, Udelson JE, Picard MH, Truong QA, Patel MR, Huang M, Pencina M, Mark DB, Heitner JF, Fordyce CB, Pellikka PA, Tardif JC, Budoff M, Nahhas G, Chow B, Kosinski AS, Lee KL, Douglas PS, Investigators PROMISE (2017) Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain: insights from the PROMISE Trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation 135(24):2320–2332. https://doi.org/10.1161/CIRCULATIONAHA.116.024360

    Article  PubMed  PubMed Central  Google Scholar 

  47. Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Spertus JA, Berman DS, Mancini GB, Weintraub WS, COURAGE Trial Research Group (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356(15):1503–1516. https://doi.org/10.1056/NEJMoa070829

    Article  Google Scholar 

  48. Chang HJ, Lin FY, Lee SE, Andreini D, Bax J, Cademartiri F, Chinnaiyan K, Chow BJW, Conte E, Cury RC, Feuchtner G, Hadamitzky M, Kim YJ, Leipsic J, Maffei E, Marques H, Plank F, Pontone G, Raff GL, van Rosendael AR, Villines TC, Weirich HG, Al'Aref SJ, Baskaran L, Cho I, Danad I, Han D, Heo R, Lee JH, Rivzi A, Stuijfzand WJ, Gransar H, Lu Y, Sung JM, Park HB, Berman DS, Budoff MJ, Samady H, Shaw LJ, Stone PH, Virmani R, Narula J, Min JK (2018) Coronary atherosclerotic precursors of acute coronary syndromes. J Am Coll Cardiol 71(22):2511–2522. https://doi.org/10.1016/j.jacc.2018.02.079

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nerlekar N, Ha FJ, Cheshire C, Rashid H, Cameron JD, Wong DT, Seneviratne S, Brown AJ (2018) Computed tomographic coronary angiography-derived plaque characteristics predict major adverse cardiovascular events: a systematic review and meta-analysis. Circ Cardiovasc Imaging 11(1):e006973. https://doi.org/10.1161/CIRCIMAGING.117.006973

    Article  PubMed  Google Scholar 

  50. Yamamoto H, Kitagawa T, Ohashi N, Utsunomiya H, Kunita E, Oka T, Urabe Y, Tsushima H, Awai K, Kihara Y (2013) Noncalcified atherosclerotic lesions with vulnerable characteristics detected by coronary CT angiography and future coronary events. J Cardiovasc Comput Tomogr 7(3):192–199. https://doi.org/10.1016/j.jcct.2013.05.008

    Article  PubMed  Google Scholar 

  51. Finck T, Stojanovic A, Will A, Hendrich E, Martinoff S, Hausleiter J, Hadamitzky M (2020) Long-term prognostic value of morphological plaque features on coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 21(3):237–248. https://doi.org/10.1093/ehjci/jez238

    Article  PubMed  Google Scholar 

  52. Andreini D, Magnoni M, Conte E, Masson S, Mushtaq S, Berti S, Canestrari M, Casolo G, Gabrielli D, Latini R, Marraccini P, Moccetti T, Modena MG, Pontone G, Gorini M, Maggioni AP, Maseri A, CAPIRE Investigators (2019) Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2019.06.019

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kishi S, Magalhães TA, Cerci R, Matheson M, Vavere A, Tanami Y, Kitslaar P et al (2016) Total coronary atherosclerotic plaque burden assessment by CT angiography for detecting obstructive coronary artery disease associated with myocardial perfusion abnormalities: plaque burden for coronary artery disease evaluation. Cardiovasc Comput Tomogr 10(2):121–127. https://doi.org/10.1016/j.jcct.2016.01.005

    Article  Google Scholar 

  54. Kwan A, Cater G, Vargas J, Bluemke A (2013) Beyond coronary stenosis: coronary computed tomographic angiography for the assessment of atherosclerotic plaque burden. Curr Cardiovasc Imaging Rep 6(2):89–101. https://doi.org/10.1007/s12410-012-9183-z

    Article  PubMed  PubMed Central  Google Scholar 

  55. Williams MC, Dweck M, Dey D (2020) Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction results from the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 141:1452–1462. https://doi.org/10.1161/CIRCULATIONAHA.119.044720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Budoff MJ, Hokanson JE, Nasir K, Shaw LJ, Kinney GL, Chow D, Demoss D, Nuguri V, Nabavi V, Ratakonda R, Berman DS, Raggi P (2010) Progression of coronary artery calcium predicts all-cause mortality. JACC Cardiovasc Imaging 3(12):1229–1236. https://doi.org/10.1016/j.jcmg.2010.08.018

    Article  PubMed  Google Scholar 

  57. Motoyama S, Ito H, Sarai M, Kondo T, Kawai H, Nagahara Y, Harigaya H, Kan S, Anno H, Takahashi H, Naruse H, Ishii J, Hecht H, Shaw LJ, Ozaki Y, Narula J (2015) Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J Am Coll Cardiol 66(4):337–346. https://doi.org/10.1016/j.jacc.2015.05.069

    Article  PubMed  Google Scholar 

  58. Matsumoto N, Sato Y, Yoda S, Nakano Y, Kunimasa T, Matsuo S, Komatsu S, Saito S, Hirayama A (2007) Prognostic value of non-obstructive CT low-dense coronary artery plaques detected by multislice computed tomography. Circ J 71:1898–1903

    Article  PubMed  Google Scholar 

  59. van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Incremental prognostic value of multislice computed tomography coronary angiography over coronary artery calcium scoring in patients with suspected coronary artery disease. Eur Heart J 30:2622–2629. https://doi.org/10.1093/eurheartj/ehp272

    Article  CAS  PubMed  Google Scholar 

  60. Chow BJ, Wells GA, Chen L, Yam Y, Galiwango P, Abraham A, Sheth T, Dennie C, Beanlands RS, Ruddy TD (2010) Prognostic value of 64-slice cardiac computed tomography severity of coronary artery disease, coronary atherosclerosis, and left ventricular ejection fraction. J Am Coll Cardiol 55:1017–1028. https://doi.org/10.1016/j.jacc.2009.10.039

    Article  PubMed  Google Scholar 

  61. Andreini D, Pontone G, Mushtaq S, Bartorelli A, Bertella E, Antonioli L, Formenti A, Cortinovis S, Veglia F, Annoni A, Agostoni P, Montorsi P, Ballerini G, Fiorentini C, Pepi M (2012) A long-term prognostic value of coronary CT angiography in suspected coronary artery disease. JACC Cardiovasc Imaging 5:690–701. https://doi.org/10.1016/j.jcmg.2012.03.009

    Article  PubMed  Google Scholar 

  62. Petretta M, Daniele S, Acampa W et al (2012) Prognostic value of coronary artery calcium score and coronary CT angiography in patients with intermediate risk of coronary artery disease. Int J Cardiovasc Imaging 28:1547–1556. https://doi.org/10.1007/s10554-011-9948-5

    Article  PubMed  Google Scholar 

  63. Versteylen MO, Kietselaer BL, Dagnelie P, Joosen IA, Dedic A et al (2013) Additive value of semiautomated quantification of coronary artery disease using cardiac computed tomographic angiography to predict future acute coronary syndrome. J Am Coll Cardiol 61(22):2296–2305. https://doi.org/10.1016/j.jacc.2013.02.065

    Article  PubMed  Google Scholar 

  64. Motoyama S, Sarai M, Harigaya H et al (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54:49–57. https://doi.org/10.1016/j.jacc.2009.02.068

    Article  PubMed  Google Scholar 

  65. Otsuka K, Fukuda S, Tanaka A et al (2014) Prognosis of vulnerable plaque on computed tomographic coronary angiography with normal myocardial perfusion image. Eur Heart J Cardiovasc Imaging 15:332–340. https://doi.org/10.1093/ehjci/jet232

    Article  PubMed  Google Scholar 

  66. Puchner SB, Liu T, Mayrhofer T et al (2014) High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial. J Am Coll Cardiol 64:684–692. https://doi.org/10.1016/j.jacc.2014.05.039

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ferencik M, Mayrhofer T, Bittner DO et al (2018) Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the promise randomized clinical trial. JAMA Cardiol 3:144–152. https://doi.org/10.1001/jamacardio.2017.4973

    Article  PubMed  PubMed Central  Google Scholar 

  68. Williams MC, Moss AJ, Dweck M et al (2019) Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-heart study. J Am Coll Cardiol 73:291–301. https://doi.org/10.1016/j.jacc.2018.10.066

    Article  PubMed  PubMed Central  Google Scholar 

  69. Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, Hasan AA, Amar S (2018) Inflammation, immunity, and infection in atherothrombosis: JACC review topic of the week. J Am Coll Cardiol 72(17):2071–2081. https://doi.org/10.1016/j.jacc.2018.08.1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Çanga Y, Emre A, Karataş MB, Çalık AN, Yelgeç NS, Yıldız U, Terzi S (2019) Mean platelet volume predicts short-term prognosis in young patients with ST-segment elevation myocardial infarction. J Cardiovasc Emerg 5(2):50–58. https://doi.org/10.2478/jce-2019-0008

    Article  Google Scholar 

  71. Ratiu M, Rat N, Nyulas T, Moldovan G, Rus V, Benedek T, Benedek I (2019) Coronary plaque geometry and thoracic fat distribution in patients with acute chest pain—a CT Angiography Study. J Cardiovasc Emerg 5(1):18–24. https://doi.org/10.2478/jce-2019-0001

    Article  Google Scholar 

  72. Held C, White HD, Stewart RAH, Budaj A, Cannon CP, Hochman JS, Koenig W, Siegbahn A, Steg PG, Soffer J, Weaver WD, Östlund O, Wallentin L, STABILITY Investigators (2017) Inflammatory biomarkers interleukin-6 and C-reactive protein and outcomes in stable coronary heart disease: experiences from the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. J Am Heart Assoc 6(10):e005077. https://doi.org/10.1161/JAHA.116.005077

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tanriverdi Z, Gungoren F, Tascanov MB, Besli F, Altiparmak IH (2020) Comparing the diagnostic value of the C-reactive protein to albumin ratio with other inflammatory markers in patients with stable angina pectoris. Angiology 71(4):360–365. https://doi.org/10.1177/0003319719897490

    Article  CAS  PubMed  Google Scholar 

  74. Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, Thomas S, Herdman L, Kotanidis CP, Thomas KE, Griffin BP, Flamm SD, Antonopoulos AS, Shirodaria C, Sabharwal N, Deanfield J, Neubauer S, Hopewell JC, Channon KM, Achenbach S, Antoniades C (2018) Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 392(10151):929–939. https://doi.org/10.1016/S0140-6736(18)31114-0

    Article  PubMed  PubMed Central  Google Scholar 

  75. Subirana I, Fitó M, Diaz O, Vila J, Francés A, Delpon E, Sanchis J, Elosua R, Muñoz-Aguayo D, Dégano IR, Marrugat J (2018) Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism. Sci Rep 8(1):3191. https://doi.org/10.1038/s41598-018-21482-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tibaut M, Caprnda M, Kubatka P, Sinkovič A, Valentova V, Filipova S, Gazdikova K, Gaspar L, Mozos I, Egom EE, Rodrigo L, Kruzliak P, Petrovic D (2019) Markers of atherosclerosis: part 1—serological markers. Heart Lung Circ 28(5):667–677. https://doi.org/10.1016/j.hlc.2018.06.1057

    Article  PubMed  Google Scholar 

  77. Benedek T, Opincariu D, Rat N, Hodas R, Mester A, Benedek I (2017) The assessment of epicardial adipose tissue in acute coronary syndrome patients. A systematic review. J Cardiovasc Emerg 3(1):18–29. https://doi.org/10.1515/jce-2017-0003

    Article  Google Scholar 

  78. Mahabadi AA, Berg MH, Lehmann N, Kälsch H, Bauer M, Kara K, Dragano N, Moebus S, Jöckel KH, Erbel R, Möhlenkamp S (2013) Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol 61(13):1388–1395. https://doi.org/10.1016/j.jacc.2012.11.062

    Article  PubMed  Google Scholar 

  79. Nakanishi K, Fukuda S, Tanaka A, Otsuka K, Jissho S, Taguchi H, Yoshikawa J, Shimada K (2014) Persistent epicardial adipose tissue accumulation is associated with coronary plaque vulnerability and future acute coronary syndrome in nonobese subjects with coronary artery disease. Atherosclerosis 237(1):353–360. https://doi.org/10.1016/j.atherosclerosis.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  80. Ding J, Hsu FC, Harris TB, Liu Y, Kritchevsky SB, Szklo M, Ouyang P, Espeland MA, Lohman KK, Criqui MH, Allison M, Bluemke DA, Carr JJ (2009) The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 90(3):499–504. https://doi.org/10.3945/ajcn.2008.27358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Park JS, Choi SY, Zheng M, Yang HM, Lim HS, Choi BJ, Yoon MH, Hwang GS, Tahk SJ, Shin JH (2013) Epicardial adipose tissue thickness is a predictor for plaque vulnerability in patients with significant coronary artery disease. Atherosclerosis 226(1):134–139. https://doi.org/10.1016/j.atherosclerosis.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  82. Maurovich-Horvat P, Kallianos K, Engel LC, Szymonifka J, Fox CS, Hoffmann U, Truong QA (2011) Influence of pericoronary adipose tissue on local coronary atherosclerosis as assessed by a novel MDCT volumetric method. Atherosclerosis 219(1):151–157. https://doi.org/10.1016/j.atherosclerosis.2011.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Okubo R, Nakanishi R, Toda M, Saito D, Watanabe I, Yabe T, Amano H, Hirai T, Ikeda T (2017) Pericoronary adipose tissue ratio is a stronger associated factor of plaque vulnerability than epicardial adipose tissue on coronary computed tomography angiography. Heart Vessels 32(7):813–822. https://doi.org/10.1007/s00380-017-0943-1

    Article  PubMed  Google Scholar 

  84. Balcer B, Dykun I, Scholsser T, Forsting M, Rassaf T, Mahabadi A (2018) Pericoronary fat volume but not attenuation differentiates culprit lesions in patients with myocardial infarction. Atherosclerosis 276:182–188. https://doi.org/10.1016/j.atherosclerosis.2018.05.035

    Article  CAS  PubMed  Google Scholar 

  85. Hell MM, Achenbach S, Schuhbaeck A, Klinghammer L, May MS, Marwan M (2016) CT-based analysis of pericoronary adipose tissue density: Relation to cardiovascular risk factors and epicardial adipose tissue volume. J Cardiovasc Comput Tomogr 10(1):52–60. https://doi.org/10.1016/j.jcct.2015.07.011

    Article  PubMed  Google Scholar 

  86. Ohyama K, Matsumoto Y, Amamizu H, Uzuka H, Nishimiya K, Morosawa S, Hirano M, Watabe H, Funaki Y, Miyata S, Takahashi J, Ito K, Shimokawa H (2017) Association of coronary perivascular adipose tissue inflammation and drug-eluting stent-induced coronary hyperconstricting responses in pigs: 18F-Fluorodeoxyglucose Positron Emission Tomography Imaging Study. Arterioscler Thromb Vasc Biol 37(9):1757–1764. https://doi.org/10.1161/ATVBAHA.117.309843

    Article  CAS  PubMed  Google Scholar 

  87. Antoniades C, Antonopoulos A, Deanfield J (2020) Imaging residual inflammatory cardiovascular risk. Eur Heart J 41:748–758. https://doi.org/10.1093/eurheartj/ehz474

    Article  CAS  PubMed  Google Scholar 

  88. Konishi M, Sugiyama S, Sato Y et al (2010) Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis 213(2):649–655. https://doi.org/10.1016/j.atherosclerosis.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  89. Goeller M, Achenbach S, Cadet S et al (2018) Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol 3(9):858–863. https://doi.org/10.1001/jamacardio.2018.1997

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kwiecinski J, Dey D, Cadet S, Lee SE, Otaki Y, Huynh PT, Doris MK, Eisenberg E, Yun M, Jansen MA, Williams MC, Tamarappoo BK, Friedman JD, Dweck MR, Newby DE, Chang HJ, Slomka PJ, Berman DS (2019) Peri-coronary adipose tissue density is associated with 18F-sodium fluoride coronary uptake in stable patients with high-risk plaques. JACC Cardiovasc Imaging 12(10):2000–2010. https://doi.org/10.1016/j.jcmg.2018.11.032

    Article  PubMed  PubMed Central  Google Scholar 

  91. Goeller M, Tamarappoo BK, Kwan AC et al (2019) Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 20(6):636–643. https://doi.org/10.1093/ehjci/jez013

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nomura CH, Assuncao-Jr AN, Guimarães PO et al (2020) Association between perivascular inflammation and downstream myocardial perfusion in patients with suspected coronary artery disease. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeaa023

    Article  PubMed  Google Scholar 

  93. Goeller M, Rahman Ihdayhid A, Cadet S et al (2020) Pericoronary adipose tissue and quantitative global non-calcified plaque characteristics from CT angiography do not differ in matched South Asian, East Asian and European-origin Caucasian patients with stable chest pain. Eur J Radiol 125:108874. https://doi.org/10.1016/j.ejrad.2020.108874

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hoshino M, Yang S, Sugiyama T et al (2020) Peri-coronary inflammation is associated with findings on coronary computed tomography angiography and fractional flow reserve. J Cardiovasc Comput Tomogr. https://doi.org/10.1016/j.jcct.2020.02.002

    Article  PubMed  Google Scholar 

  95. Kwiecinski J, Dey D, Cadet S, Lee SE, Tamarappoo B, Otaki Y, Huynh PT, Friedman JD, Dweck MR, Newby DE, Yun M, Chang HJ, Slomka PJ, Berman DS (2020) Predictors of 18F-sodium fluoride uptake in patients with stable coronary artery disease and adverse plaque features on computed tomography angiography. Eur Heart J Cardiovasc Imaging 21(1):58–66. https://doi.org/10.1093/ehjci/jez152

    Article  PubMed  Google Scholar 

  96. Lerman JB, Joshi AA, Chaturvedi A, Aberra TM, Dey AK, Rodante JA, Salahuddin T, Chung JH, Rana A, Teague HL, Wu JJ, Playford MP, Lockshin BA, Chen MY, Sandfort V, Bluemke DA, Mehta NN (2017) Coronary plaque characterization in psoriasis reveals high-risk features that improve after treatment in a Prospective Observational Study. Circulation 136(3):263–276. https://doi.org/10.1161/CIRCULATIONAHA.116.026859

    Article  PubMed  PubMed Central  Google Scholar 

  97. Oikonomou E, Siddique M, Antoniades C (2020) Artificial intelligence in medical imaging: a radiomic guide to precision phenotyping of cardiovascular disease. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa021

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hampe N, Wolterink JM, van Velzen SGM, Leiner T, Išgum I (2019) Machine learning for assessment of coronary artery disease in cardiac CT: a survey. Front Cardiovasc Med 6:172. https://doi.org/10.3389/fcvm.2019.00172

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang S, Summers R (2012) Machine learning and radiology. Med Image Anal 16(5):933–951. https://doi.org/10.1016/j.media.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wernick MN, Yang Y, Brankov JG, Yourganov G, Strother SC (2010) Machine learning in medical imaging. IEEE Signal Process Mag 27(4):25–38. https://doi.org/10.1109/MSP.2010.936730

    Article  PubMed  PubMed Central  Google Scholar 

  101. Saba L, Biswas M, Kuppili V, Cuadrado Godia E, Suri HS, Edla DR, Omerzu T, Laird JR, Khanna NN, Mavrogeni S, Protogerou A, Sfikakis PP, Viswanathan V, Kitas GD, Nicolaides A, Gupta A, Suri JS (2019) The present and future of deep learning in radiology. Eur J Radiol 114:14–24. https://doi.org/10.1016/j.ejrad.2019.02.038

    Article  PubMed  Google Scholar 

  102. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, Geis JR, Pandharipande PV, Brink JA, Dreyer KJ (2018) Current applications and future impact of machine learning in radiology. Radiology 288(2):318–328. https://doi.org/10.1148/radiol.2018171820

    Article  PubMed  Google Scholar 

  103. Singh G, Al'Aref SJ, Van Assen M, Kim TS, van Rosendael A, Kolli KK, Dwivedi A, Maliakal G, Pandey M, Wang J, Do V, Gummalla M, De Cecco CN, Min JK (2018) Machine learning in cardiac CT: basic concepts and contemporary data. J Cardiovasc Comput Tomogr 12(3):192–201. https://doi.org/10.1016/j.jcct.2018.04.010

    Article  PubMed  Google Scholar 

  104. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446. https://doi.org/10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30(9):1234–1248. https://doi.org/10.1016/j.mri.2012.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  106. Koçak B, Durmaz EŞ, Ateş E, Kılıçkesmez Ö (2019) Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interv Radiol 25(6):485–495. https://doi.org/10.5152/dir.2019.19321

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  108. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006

    Article  CAS  PubMed  Google Scholar 

  109. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B (2019) Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J 17:995–1008. https://doi.org/10.1016/j.csbj.2019.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  110. Baessler B, Mannil M, Oebel S, Maintz D, Alkadhi H, Manka R (2018) Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology 286(1):103–112. https://doi.org/10.1148/radiol.2017170213

    Article  PubMed  Google Scholar 

  111. Mannil M, von Spiczak J, Manka R, Alkadhi H (2018) Texture analysis and machine learning for detecting myocardial infarction in noncontrast low-dose computed tomography: unveiling the invisible. Invest Radiol 53(6):338–343. https://doi.org/10.1097/RLI.0000000000000448

    Article  PubMed  Google Scholar 

  112. Brunner G, Chittajallu DR, Kurkure U, Kakadiaris IA (2010) Toward the automatic detection of coronary artery calcification in non-contrast computed tomography data. Int J Cardiovasc Imaging 26(7):829–838. https://doi.org/10.1007/s10554-010-9608-1

    Article  PubMed  Google Scholar 

  113. Mittal S, Zheng Y, Georgescu B, Vega-Higuera F, Zhou SK, Meer P, Comaniciu D (2010) Fast automatic detection of calcified coronary lesions in 3D cardiac CT images. International Workshop on Machine Learning in Medical Imaging 1–9. https://doi.org/10.1007/978-3-642-15948-0_1

  114. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I (2016) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34:123–136. https://doi.org/10.1016/j.media.2016.04.004

    Article  PubMed  Google Scholar 

  115. Masuda T, Nakaura T, Funama Y, Okimoto T, Sato T, Higaki T, Noda N, Imada N, Baba Y, Awai K (2019) Machine-learning integration of CT histogram analysis to evaluate the composition of atherosclerotic plaques: validation with IB-IVUS. J Cardiovasc Comput Tomogr 13(2):163–169. https://doi.org/10.1016/j.jcct.2018.10.018

    Article  PubMed  Google Scholar 

  116. Dey D, Cheng VY, Slomka PJ, Nakazato R, Ramesh A, Gurudevan S, Germano G, Berman DS (2009) Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography. J Cardiovasc Comput Tomogr 3(6):372–382. https://doi.org/10.1016/j.jcct.2009.09.004

    Article  PubMed  Google Scholar 

  117. Kolossváry M, Karády J, Kikuchi Y, Ivanov A, Schlett CL, Lu MT, Foldyna B, Merkely B, Aerts HJ, Hoffmann U, Maurovich-Horvat P (2019) Radiomics versus visual and histogram-based assessment to identify atheromatous lesions at coronary CT angiography: an ex vivo study. Radiology 293(1):89–96. https://doi.org/10.1148/radiol.2019190407

    Article  PubMed  Google Scholar 

  118. Kolossváry M, Karády J, Szilveszter B, Kitslaar P, Hoffmann U, Merkely B, Maurovich-Horvat P (2017) Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with Napkin-Ring Sign. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.117.006843

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van' t Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, FAME Study Investigators (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224. https://doi.org/10.1056/NEJMoa0807611

    Article  Google Scholar 

  120. Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61(22):2233–2241. https://doi.org/10.1016/j.jacc.2012.11.083

    Article  PubMed  Google Scholar 

  121. Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Bøtker HE, Achenbach S; NXT Trial Study Group (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63(12):1145–1155. https://doi.org/10.1016/j.jacc.2013.11.043

    Article  Google Scholar 

  122. Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, Flohr T, Sharma P, Comaniciu D (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 121(1):42–52. https://doi.org/10.1152/japplphysiol.00752.2015

    Article  PubMed  Google Scholar 

  123. Baumann S, Renker M, Schoepf UJ, De Cecco CN, Coenen A, De Geer J, Kruk M, Kim YH, Albrecht MH, Duguay TM, Jacobs BE, Bayer RR, Litwin SE, Weiss C, Akin I, Borggrefe M, Yang DH, Kepka C, Persson A, Nieman K, Tesche C (2019) Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve—results from the MACHINE registry. Eur J Radiol 119:108657. https://doi.org/10.1016/j.ejrad.2019.108657

    Article  PubMed  Google Scholar 

  124. Hu X, Yang M, Han L, Du Y (2018) Diagnostic performance of machine learning- based computed fractional flow reserve (FFR) derived from coronary computed tomography angiography for the assessment of myocardial ischemia verified by invasive FFR. Int J Cardiovasc Imaging 34(12):1987–1996. https://doi.org/10.1007/s10554-018-1419-9

    Article  PubMed  Google Scholar 

  125. Yu M, Lu Z, Li W, Wei M, Yan J, Zhang J (2018) CT morphological index provides incremental value to machine learning based CT-FFR for predicting hemodynamically significant coronary stenosis. Int J Cardiol 265:256–261. https://doi.org/10.1016/j.ijcard.2018.01.075

    Article  PubMed  Google Scholar 

  126. Wang ZQ, Zhou YJ, Zhao YX, Shi DM, Liu YY, Liu W, Liu XL, Li YP (2019) Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography. J Geriatr Cardiol 16(1):42–48. https://doi.org/10.11909/j.issn.1671-5411.2019.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kumamaru KK, Fujimoto S, Otsuka Y, Kawasaki T, Kawaguchi Y, Kato E, Takamura K, Aoshima C, Kamo Y, Kogure Y, Inage H, Daida H, Aoki S (2020) Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 21(4):437–445. https://doi.org/10.1093/ehjci/jez160

    Article  PubMed  Google Scholar 

  128. van Hamersvelt RW, Zreik M, Voskuil M, Viergever MA, Išgum I, Leiner T (2019) Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis. Eur Radiol 29(5):2350–2359. https://doi.org/10.1007/s00330-018-5822-3

    Article  PubMed  Google Scholar 

  129. Motwani M, Dey D, Berman DS et al (2017) Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 38(7):500–507. https://doi.org/10.1093/eurheartj/ehw188

    Article  PubMed  Google Scholar 

  130. Hell MM, Motwani M, Otaki Y, Cadet S, Gransar H, Miranda-Peats R, Valk J, Slomka PJ, Cheng VY, Rozanski A, Tamarappoo BK, Hayes S, Achenbach S, Berman DS, Dey D (2017) Quantitative global plaque characteristics from coronary computed tomography angiography for the prediction of future cardiac mortality during long-term follow-up. Eur Heart J Cardiovasc Imaging 18(12):1331–1339. https://doi.org/10.1093/ehjci/jex183

    Article  PubMed  PubMed Central  Google Scholar 

  131. Oikonomou EK, Williams MC, Kotanidis CP et al (2019) A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J 40(43):3529–3543. https://doi.org/10.1093/eurheartj/ehz592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. van Rosendael AR, Maliakal G, Kolli KK et al (2018) Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr 12(3):204–209. https://doi.org/10.1016/j.jcct.2018.04.011

    Article  PubMed  Google Scholar 

  133. Nakanishi R, Dey D, Commandeur F et al (2018) Machine learning in predicting coronary heart disease and cardiovascular disease events: results from the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 71(11):1483

    Article  Google Scholar 

  134. von Knebel Doeberitz PL, De Cecco CN, Schoepf UJ et al (2019) Impact of coronary computerized tomography angiography-derived plaque quantification and machine-learning computerized tomography fractional flow reserve on adverse cardiac outcome. Am J Cardiol 124(9):1340–1348. https://doi.org/10.1016/j.amjcard.2019.07.061

    Article  Google Scholar 

  135. Obaid D, Calvert P, Gopalan D, Parker R, West N, Goddard M, Rudd JF, Bennett M (2014) Dual-energy computed tomography imaging to determine atherosclerotic plaque composition: a prospective study with tissue validation. J Cardiovasc Comput Tomogr 8:230–237. https://doi.org/10.1016/j.jcct.2014.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  136. Danad I, Fayad Z, Willemink M, Kin JK (2015) New applications of cardiac computed tomography dual-energy, spectral, and molecular CT imaging. JACC: Cardiovasc Imaging 8(6):710–723. https://doi.org/10.1016/j.jcmg.2015.03.005

    Article  Google Scholar 

  137. Boussel L, Coulon P, Thran A, Roessl E, Martens G, Sigovan M et al (2014) Photon counting spectral CT component analysis of coronary artery atherosclerotic plaque samples. Br J Radiol 87:20130798. https://doi.org/10.1259/bjr.20130798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Takagi H, Tanaka R, Nagata K, Ninomiya R, Arakita K, Schuijf J, Yoshioka K (2018) Diagnostic performance of coronary CT angiography with ultra-high-resolution CT: comparison with invasive coronary angiography. Eur J Radiol 101:30–37. https://doi.org/10.1016/j.ejrad.2018.01.030

    Article  PubMed  Google Scholar 

  139. Motoyama S, Ito H, Sarai M, Nagahara Y, Miyajima K, Matsumoto R, Doi Y, Kataoka Y, Takahashi H, Ozaki Y, Toyama H, Katada K (2018) Ultra-high-resolution computed tomography angiography for assessment of coronary artery stenosis. Circ J 82:1844–1851. https://doi.org/10.1253/circj.CJ-17-1281

    Article  PubMed  Google Scholar 

  140. Cormode DP, Naha PC, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9:37–52. https://doi.org/10.1002/cmmi.1551

    Article  CAS  PubMed  Google Scholar 

  141. Kang J, Rancati T, Lee S, Oh JH, Kerns SL, Scott JG, Schwartz R, Kim S, Rosenstein BS (2018) machine learning and radiogenomics: lessons learned and future directions. Front Oncol 8:228. https://doi.org/10.3389/fonc.2018.00228

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R (2019) Radiogenomics: bridging imaging and genomics. Abdom Radiol (NY) 44(6):1960–1984. https://doi.org/10.1007/s00261-019-02028-w

    Article  Google Scholar 

  143. Casas B, Lantz J, Viola F, Cedersund G, Bolger AF, Carlhäll CJ, Karlsson M, Ebbers T (2017) Bridging the gap between measurements and modelling: a cardiovascular functional avatar. Sci Rep 7(1):6214. https://doi.org/10.1038/s41598-017-06339-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shinbane JS, Saxon LA (2018) Virtual medicine: utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation. J Cardiovasc Comput Tomogr 12(1):16–27. https://doi.org/10.1016/j.jcct.2017.11.004

    Article  PubMed  Google Scholar 

Download references

Funding

This funding was supported by the PlaqueImage research grant (Increasing the research capacity in the field of vulnerable plaque imaging, based on advanced nanoparticles, fusion imaging and computational simulation—PlaqueImage) financed by the National Authority of Scientific Research and Innovation and the Romanian Ministry of European Funding, through the Competitivity Operational Program, contract number 26/01.09.2016, SMIS code:103544.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodora Benedek.

Ethics declarations

Conflict of interest

I hereby state that the authors have no conflict of interests regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opincariu, D., Benedek, T., Chițu, M. et al. From CT to artificial intelligence for complex assessment of plaque-associated risk. Int J Cardiovasc Imaging 36, 2403–2427 (2020). https://doi.org/10.1007/s10554-020-01926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01926-1

Keywords

Navigation