Skip to main content
Log in

Multi-modality imaging for the assessment of myocardial perfusion with emphasis on stress perfusion CT and MR imaging

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

High-quality and non-invasive diagnostic tools for assessing myocardial ischemia are necessary for therapeutic decisions regarding coronary artery disease. Myocardial perfusion has been studied using myocardial contrast echo perfusion, single-photon emission computed tomography, positron emission tomography, cardiovascular magnetic resonance, and, more recently, computed tomography. The addition of coronary computed tomography angiography to myocardial perfusion imaging improves the specificity and overall diagnostic accuracy of detecting the hemodynamic significance of coronary artery stenosis. This study reviews the benefits, limitations, and imaging findings of various imaging modalities for assessing myocardial perfusion, with particular emphasis on stress perfusion computed tomography and cardiovascular magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CAD:

Coronary artery disease

CCTA:

Coronary computed tomography angiography

CMR:

Cardiovascular magnetic resonance

CTP:

Computed tomography perfusion

DECT:

Dual-energy computed tomography

ECG:

Electrocardiography

FFR:

Fractional flow reserve

ICA:

Invasive coronary angiography

LAD:

Left anterior descending coronary artery

LCX:

Left circumflex artery

PET:

Positron emission tomography

RCA:

Right coronary artery

SPECT:

Single-photon emission computed tomography

References

  1. Writing Group Members, Lloyd-Jones D, Adams RJ et al (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215

    Article  Google Scholar 

  2. Patel MR, Dehmer GJ, Hirshfeld JW et al (2009) ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: a Report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology: Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. Circulation 119(9):1330–1352

    Article  PubMed  Google Scholar 

  3. Members Task Force, Montalescot G, Sechtem U et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003

    Article  Google Scholar 

  4. Shaw LJ, Berman DS, Maron DJ et al (2008) Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117(10):1283–1291

    Article  PubMed  Google Scholar 

  5. Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  CAS  PubMed  Google Scholar 

  6. Sato A, Hiroe M, Tamura M et al (2008) Quantitative measures of coronary stenosis severity by 64-slice CT angiography and relation to physiologic significance of perfusion in nonobese patients: comparison with stress myocardial perfusion imaging. J Nucl Med 49(4):564–572

    Article  PubMed  Google Scholar 

  7. Groothuis JG, Beek AM, Brinckman SL et al (2010) Low to intermediate probability of coronary artery disease: comparison of coronary CT angiography with first-pass MR myocardial perfusion imaging. Radiology 254(2):384–392

    Article  PubMed  Google Scholar 

  8. Tonino PA, Fearon WF, De Bruyne B et al (2010) Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 55(25):2816–2821

    Article  PubMed  Google Scholar 

  9. Ko BS, Cameron JD, Meredith IT et al (2012) Computed tomography stress myocardial perfusion imaging in patients considered for revascularization: a comparison with fractional flow reserve. Eur Heart J 33(1):67–77

    Article  PubMed  Google Scholar 

  10. Meijboom WB, Van Mieghem CA, van Pelt N et al (2008) Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52(8):636–643

    Article  PubMed  Google Scholar 

  11. Salerno M, Beller GA (2009) Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging 2(5):412–424

    Article  PubMed  Google Scholar 

  12. Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS); European Association for Percutaneous Cardiovascular Interventions (EAPCI), Wijns W et al (2010) Guidelines on myocardial revascularization. Eur Heart J 31(20):2501–2555

    Article  Google Scholar 

  13. Kern MJ, Deligonul U, Tatineni S et al (1991) Intravenous adenosine: continuous infusion and low dose bolus administration for determination of coronary vasodilator reserve in patients with and without coronary artery disease. J Am Coll Cardiol 18(3):718–729

    Article  CAS  PubMed  Google Scholar 

  14. Plein S, Motwani M (2013) Fractional flow reserve as the reference standard for myocardial perfusion studies: fool’s gold? Eur Heart J Cardiovasc Imaging 14(12):1211–1213

    Article  PubMed  Google Scholar 

  15. Kakouros N, Rybicki FJ, Mitsouras D et al (2013) Coronary pressure-derived fractional flow reserve in the assessment of coronary artery stenoses. Eur Radiol 23(4):958–967

    Article  PubMed  Google Scholar 

  16. Gaemperli O, Bengel FM, Kaufmann PA (2011) Cardiac hybrid imaging. Eur Heart J 32(17):2100–2108

    Article  PubMed  Google Scholar 

  17. Hendel RC, Berman DS, Di Carli MF et al (2009) ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Circulation 119(22):e561–e587

    Article  PubMed  Google Scholar 

  18. Sahiner I, Akdemir UO, Kocaman SA et al (2013) Quantitative evaluation improves specificity of myocardial perfusion SPECT in the assessment of functionally significant intermediate coronary artery stenoses: a comparative study with fractional flow reserve measurements. Ann Nucl Med 27(2):132–139

    Article  PubMed  Google Scholar 

  19. Klocke FJ, Baird MG, Lorell BH et al (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 42(7):1318–1333

    Article  PubMed  Google Scholar 

  20. Jaarsma C, Leiner T, Bekkers SC et al (2012) Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol 59(19):1719–1728

    Article  PubMed  Google Scholar 

  21. Farzaneh-Far A, Phillips HR, Shaw LK et al (2012) Ischemia change in stable coronary artery disease is an independent predictor of death and myocardial infarction. JACC Cardiovasc Imaging 5(7):715–724

    Article  PubMed  Google Scholar 

  22. Ragosta M, Bishop AH, Lipson LC et al (2007) Comparison between angiography and fractional flow reserve versus single-photon emission computed tomographic myocardial perfusion imaging for determining lesion significance in patients with multivessel coronary disease. Am J Cardiol 99(7):896–902

    Article  PubMed  Google Scholar 

  23. Lima RS, Watson DD, Goode AR et al (2003) Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 42(1):64–70

    Article  PubMed  Google Scholar 

  24. Berman DS, Kang X, Hayes SW et al (2003) Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management. J Am Coll Cardiol 41(7):1125–1133

    Article  PubMed  Google Scholar 

  25. Hachamovitch R, Berman DS, Shaw LJ et al (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97(6):535–543

    Article  CAS  PubMed  Google Scholar 

  26. Young LH, Wackers FJ, Chyun DA et al (2009) Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA 301(15):1547–1555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Greenwood JP, Maredia N, Younger JF et al (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379(9814):453–460

    Article  PubMed Central  PubMed  Google Scholar 

  28. Schwitter J, Wacker CM, van Rossum AC et al (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29(4):480–489

    Article  PubMed  Google Scholar 

  29. Slomka PJ, Dey D, Duvall WL et al (2012) Advances in nuclear cardiac instrumentation with a view towards reduced radiation exposure. Curr Cardiol Rep 14(2):208–216

    Article  PubMed Central  PubMed  Google Scholar 

  30. Mc Ardle BA, Dowsley TF, deKemp RA et al (2012) Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? A systematic review and meta-analysis. J Am Coll Cardiol 60(18):1828–1837

    Article  PubMed  Google Scholar 

  31. Santana CA, Garcia EV, Faber TL et al (2009) Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. J Nucl Cardiol 16(2):201–211

    Article  PubMed Central  PubMed  Google Scholar 

  32. Heller GV, Calnon D, Dorbala S (2009) Recent advances in cardiac PET and PET/CT myocardial perfusion imaging. J Nucl Cardiol 16(6):962–969

    Article  PubMed  Google Scholar 

  33. Schaap J, Kauling RM, Boekholdt SM et al (2013) Incremental diagnostic accuracy of hybrid SPECT/CT coronary angiography in a population with an intermediate to high pre-test likelihood of coronary artery disease. Eur Heart J Cardiovasc Imaging 14(7):642–649

    Article  PubMed  Google Scholar 

  34. Kajander S, Joutsiniemi E, Saraste M et al (2010) Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 122(6):603–613

    Article  CAS  PubMed  Google Scholar 

  35. Schaap J, de Groot JA, Nieman K et al (2013) Hybrid myocardial perfusion SPECT/CT coronary angiography and invasive coronary angiography in patients with stable angina pectoris lead to similar treatment decisions. Heart 99(3):188–194

    Article  PubMed  Google Scholar 

  36. Plein S, Kozerke S, Suerder D et al (2008) High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease. Eur Heart J 29(17):2148–2155

    Article  PubMed Central  PubMed  Google Scholar 

  37. Nandalur KR, Dwamena BA, Choudhri AF et al (2007) Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol 50(14):1343–1353

    Article  PubMed  Google Scholar 

  38. Panting JR, Gatehouse PD, Yang GZ et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346(25):1948–1953

    Article  PubMed  Google Scholar 

  39. Greenwood JP, Motwani M, Maredia N et al (2014) Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) Trial. Circulation 129(10):1129–1138

    Article  PubMed  Google Scholar 

  40. Manka R, Jahnke C, Kozerke S et al (2011) Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting. J Am Coll Cardiol 57(4):437–444

    Article  PubMed  Google Scholar 

  41. Watkins S, McGeoch R, Lyne J et al (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 120(22):2207–2213

    Article  PubMed  Google Scholar 

  42. Lockie T, Ishida M, Perera D et al (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57(1):70–75

    Article  PubMed  Google Scholar 

  43. Mordini FE, Haddad T, Hsu LY et al (2014) Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment. JACC Cardiovasc Imaging 7(1):14–22

    Article  PubMed Central  PubMed  Google Scholar 

  44. Klem I, Greulich S, Heitner JF et al (2008) Value of cardiovascular magnetic resonance stress perfusion testing for the detection of coronary artery disease in women. JACC Cardiovasc Imaging 1(4):436–445

    Article  PubMed  Google Scholar 

  45. Cheng AS, Pegg TJ, Karamitsos TD et al (2007) Cardiovascular magnetic resonance perfusion imaging at 3-Tesla for the detection of coronary artery disease: a comparison with 1.5-Tesla. J Am Coll Cardiol 49(25):2440–2449

    Article  PubMed  Google Scholar 

  46. Walcher T, Ikuye K, Rottbauer W et al (2013) Is contrast-enhanced cardiac magnetic resonance imaging at 3 T superior to 1.5 T for detection of coronary artery disease? Int J Cardiovasc Imaging 29(2):355–361

    Article  PubMed  Google Scholar 

  47. Donati OF, Scheffel H, Stolzmann P et al (2010) Combined cardiac CT and MRI for the comprehensive workup of hemodynamically relevant coronary stenoses. AJR Am J Roentgenol 194(4):920–926

    Article  PubMed  Google Scholar 

  48. Meyer C, Strach K, Thomas D et al (2008) High-resolution myocardial stress perfusion at 3 T in patients with suspected coronary artery disease. Eur Radiol 18(2):226–233

    Article  PubMed  Google Scholar 

  49. Motwani M, Maredia N, Fairbairn TA et al (2014) Assessment of ischaemic burden in angiographic three-vessel coronary artery disease with high-resolution myocardial perfusion cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 15(6):701–708

    Article  PubMed Central  PubMed  Google Scholar 

  50. Jogiya R, Kozerke S, Morton G et al (2012) Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol 60(8):756–765

    Article  PubMed  Google Scholar 

  51. Kaewlai R, Abujudeh H (2012) Nephrogenic systemic fibrosis. AJR Am J Roentgenol 199(1):W17–W23

    Article  PubMed  Google Scholar 

  52. George RT, Silva C, Cordeiro MA et al (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48(1):153–160

    Article  PubMed  Google Scholar 

  53. George RT, Jerosch-Herold M, Silva C et al (2007) Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Investig Radiol 42(12):815–822

    Article  Google Scholar 

  54. Nagao M, Matsuoka H, Kawakami H et al (2008) Quantification of myocardial perfusion by contrast-enhanced 64-MDCT: characterization of ischemic myocardium. AJR Am J Roentgenol 191(1):19–25

    Article  PubMed  Google Scholar 

  55. Spiro AJ, Haramati LB, Jain VR et al (2013) Resting cardiac 64-MDCT does not reliably detect myocardial ischemia identified by radionuclide imaging. AJR Am J Roentgenol 200(2):337–342

    Article  PubMed  Google Scholar 

  56. Tamarappoo BK, Dey D, Nakazato R et al (2010) Comparison of the extent and severity of myocardial perfusion defects measured by CT coronary angiography and SPECT myocardial perfusion imaging. JACC Cardiovasc Imaging 3(10):1010–1019

    Article  PubMed  Google Scholar 

  57. Blankstein R, Shturman LD, Rogers IS et al (2009) Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 54(12):1072–1084

    Article  PubMed  Google Scholar 

  58. Rocha-Filho JA, Blankstein R, Shturman LD et al (2010) Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology 254(2):410–419

    Article  PubMed Central  PubMed  Google Scholar 

  59. Feuchtner G, Goetti R, Plass A et al (2011) Adenosine stress high-pitch 128-slice dual-source myocardial computed tomography perfusion for imaging of reversible myocardial ischemia: comparison with magnetic resonance imaging. Circ Cardiovasc Imaging 4(5):540–549

    Article  PubMed  Google Scholar 

  60. George RT, Arbab-Zadeh A, Miller JM et al (2009) Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ Cardiovasc Imaging 2(3):174–182

    Article  PubMed Central  PubMed  Google Scholar 

  61. George RT, Arbab-Zadeh A, Miller JM et al (2012) Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circ Cardiovasc Imaging 5(3):333–340

    Article  PubMed  Google Scholar 

  62. Bettencourt N, Chiribiri A, Schuster A et al (2013) Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress–rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol 61(10):1099–1107

    Article  PubMed  Google Scholar 

  63. Tashakkor AY, Nicolaou S, Leipsic J et al (2012) The emerging role of cardiac computed tomography for the assessment of coronary perfusion: a systematic review and meta-analysis. Can J Cardiol 28(4):413–422

    Article  PubMed  Google Scholar 

  64. Rochitte CE, George RT, Chen MY et al (2014) Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J 35(17):1120–1130

    Article  PubMed  Google Scholar 

  65. Wong DT, Ko BS, Cameron JD et al (2014) Comparison of diagnostic accuracy of combined assessment using adenosine stress computed tomography perfusion+ computed tomography angiography with transluminal attenuation gradient+ computed tomography angiography against invasive fractional flow reserve. J Am Coll Cardiol 63(18):1904–1912

    Article  PubMed  Google Scholar 

  66. Rossi A, Merkus D, Klotz E et al (2014) Stress myocardial perfusion: imaging with multidetector CT. Radiology 270(1):25–46

    Article  PubMed  Google Scholar 

  67. Bamberg F, Becker A, Schwarz F et al (2011) Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 260(3):689–698

    Article  PubMed  Google Scholar 

  68. Wang Y, Qin L, Shi X et al (2012) Adenosine-stress dynamic myocardial perfusion imaging with second-generation dual-source CT: comparison with conventional catheter coronary angiography and SPECT nuclear myocardial perfusion imaging. AJR Am J Roentgenol 198(3):521–529

    Article  PubMed  Google Scholar 

  69. Ruzsics B, Lee H, Zwerner PL et al (2008) Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 18(11):2414–2424

    Article  PubMed  Google Scholar 

  70. Ko SM, Choi JW, Song MG et al (2011) Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol 21(1):26–35

    Article  PubMed  Google Scholar 

  71. Ko SM, Choi JW, Hwang HK et al (2012) Diagnostic performance of combined noninvasive anatomic and functional assessment with dual-source CT and adenosine-induced stress dual-energy CT for detection of significant coronary stenosis. AJR Am J Roentgenol 198(3):512–520

    Article  PubMed  Google Scholar 

  72. Rief M, Zimmermann E, Stenzel F et al (2013) Computed tomography angiography and myocardial computed tomography perfusion in patients with coronary stents: prospective intraindividual comparison with conventional coronary angiography. J Am Coll Cardiol 62(16):1476–1485

    Article  PubMed  Google Scholar 

  73. Stenner P, Schmidt B, Allmendinger T et al (2010) Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography. Invest Radiol 45(6):314–323

    PubMed  Google Scholar 

  74. Kitagawa K, George RT, Arbab-Zadeh A et al (2010) Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion. Radiology 256(1):111–118

    Article  PubMed  Google Scholar 

  75. Kim SM, Kim YN, Choe YH (2013) Adenosine-stress dynamic myocardial perfusion imaging using 128-slice dual-source CT: optimization of the CT protocol to reduce the radiation dose. Int J Cardiovasc Imaging 29(4):875–884

    Article  PubMed  Google Scholar 

  76. Techasith T, Cury RC (2011) Stress myocardial CT perfusion: an update and future perspective. JACC Cardiovasc Imaging 4(8):905–916

    Article  PubMed  Google Scholar 

  77. Dowsley T, Al-Mallah M, Ananthasubramaniam K et al (2013) The role of noninvasive imaging in coronary artery disease detection, prognosis, and clinical decision making. Can J Cardiol 29(3):285–296

    Article  PubMed  Google Scholar 

  78. Ghotbi AA, Kjaer A, Hasbak P (2014) Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging. Clin Physiol Funct Imaging 34(3):163–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Vincenti G, Quercioli A, Zaidi H et al (2010) Combined evaluation of myocardial perfusion and coronary morphology in the identification of subclinical CAD. Radiation exposure of 13N-ammonia PET/CT. Nuklearmedizin 49(5):173–182

    Article  CAS  PubMed  Google Scholar 

  80. Di Carli MF, Dorbala S, Curillova Z et al (2007) Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 14(6):799–809

    Article  PubMed  Google Scholar 

  81. Verani MS, Mahmarian JJ, Hixson JB et al (1990) Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise. Circulation 82(1):80–87

    Article  CAS  PubMed  Google Scholar 

  82. Forster S, Rieber J, Ubleis C et al (2010) Tc-99m sestamibi single photon emission computed tomography for guiding percutaneous coronary intervention in patients with multivessel disease: a comparison with quantitative coronary angiography and fractional flow reserve. Int J Cardiovasc Imaging 26(2):203–213

    Article  PubMed  Google Scholar 

  83. Nakamura M, Takeda K, Ichihara T et al (1999) Feasibility of simultaneous stress 99mTc-sestamibi/rest 201Tl dual-isotope myocardial perfusion SPECT in the detection of coronary artery disease. J Nucl Med 40(6):895–903

    CAS  PubMed  Google Scholar 

  84. Bateman TM, Heller GV, McGhie AI et al (2006) Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13(1):24–33

    Article  PubMed  Google Scholar 

  85. Danad I, Raijmakers PG, Appelman YE et al (2013) Hybrid imaging using quantitative H215O PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med 54(1):55–63

    Article  CAS  PubMed  Google Scholar 

  86. Groves AM, Speechly-Dick ME, Kayani I et al (2009) First experience of combined cardiac PET/64-detector CT angiography with invasive angiographic validation. Eur J Nucl Med Mol Imaging 36(12):2027–2033

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Min Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, S.M., Hwang, H.K., Kim, S.M. et al. Multi-modality imaging for the assessment of myocardial perfusion with emphasis on stress perfusion CT and MR imaging. Int J Cardiovasc Imaging 31 (Suppl 1), 1–21 (2015). https://doi.org/10.1007/s10554-015-0645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0645-7

Keywords

Navigation