Skip to main content
Log in

Hypertonicity primes malignant melanoma cells for apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The tumor environment critically influences responsiveness of cancer cells to chemotherapies, most of which activate the mitochondria-regulated (intrinsic) apoptotic cascade to kill malignant cells. Especially skin tumors encounter an environment with remarkable biophysical properties. Cutaneous accumulation of Na+ locally establishes osmotic pressure gradients in vivo (hypertonicity or hyperosmotic stress), but whether cutaneous hypertonicity is a factor that modulates the responsiveness of skin cancers to therapeutic apoptosis-induction has thus far not been investigated. Here, we show that hyperosmotic stress lowers the threshold for apoptosis induction in malignant melanoma, the deadliest form of skin cancer. Hypertonic conditions enforce addiction to BCL-2-like proteins to prevent initiation of the mitochondria-regulated (intrinsic) apoptotic pathway. Essentially, hyperosmotic stress primes mitochondria for death. Our work identifies osmotic pressure in the tumor microenvironment as a cell extrinsic factor that modulates responsiveness of malignant melanoma cells to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Knoll G, Bittner S, Kurz M, Jantsch J, Ehrenschwender M (2016) Hypoxia regulates TRAIL sensitivity of colorectal cancer cells through mitochondrial autophagy. Oncotarget 7(27):41488–41504. https://doi.org/10.18632/oncotarget.9206

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bittner S, Knoll G, Ehrenschwender M (2017) Hyperosmotic stress enhances cytotoxicity of SMAC mimetics. Cell Death Dis 8(8):e2967. https://doi.org/10.1038/cddis.2017.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jantsch J, Schatz V, Friedrich D, Schroder A, Kopp C, Siegert I, Maronna A, Wendelborn D, Linz P, Binger KJ, Gebhardt M, Heinig M, Neubert P, Fischer F, Teufel S, David JP, Neufert C, Cavallaro A, Rakova N, Kuper C, Beck FX, Neuhofer W, Muller DN, Schuler G, Uder M, Bogdan C, Luft FC, Titze J (2015) Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab 21(3):493–501. https://doi.org/10.1016/j.cmet.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nikpey E, Karlsen TV, Rakova N, Titze JM, Tenstad O, Wiig H (2017) High-salt diet causes osmotic gradients and hyperosmolality in skin without affecting interstitial fluid and lymph. Hypertension 69(4):660–668. https://doi.org/10.1161/HYPERTENSIONAHA.116.08539

    Article  CAS  PubMed  Google Scholar 

  5. Fischereder M, Michalke B, Schmockel E, Habicht A, Kunisch R, Pavelic I, Szabados B, Schonermarck U, Nelson PJ, Stangl M (2017) Sodium storage in human tissues is mediated by glycosaminoglycan expression. Am J Physiol Renal Physiol 313(2):F319–F325. https://doi.org/10.1152/ajprenal.00703.2016

    Article  CAS  PubMed  Google Scholar 

  6. Schafflhuber M, Volpi N, Dahlmann A, Hilgers KF, Maccari F, Dietsch P, Wagner H, Luft FC, Eckardt KU, Titze J (2007) Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats. Am J Physiol Renal Physiol 292(5):F1490–F1500. https://doi.org/10.1152/ajprenal.00300.2006

    Article  CAS  PubMed  Google Scholar 

  7. Titze J, Luft FC, Bauer K, Dietsch P, Lang R, Veelken R, Wagner H, Eckardt KU, Hilgers KF (2006) Extrarenal Na+ balance, volume, and blood pressure homeostasis in intact and ovariectomized deoxycorticosterone-acetate salt rats. Hypertension 47(6):1101–1107. https://doi.org/10.1161/01.HYP.0000221039.17735.1a

    Article  CAS  PubMed  Google Scholar 

  8. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Muller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt KU, Luft FC, Kerjaschki D, Titze J (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15(5):545–552. https://doi.org/10.1038/nm.1960

    Article  CAS  PubMed  Google Scholar 

  9. Thomann S, Boscheinen JB, Vogel K, Knipe DM, DeLuca N, Gross S, Schuler-Thurner B, Schuster P, Schmidt B (2015) Combined cytotoxic activity of an infectious, but non-replicative herpes simplex virus type 1 and plasmacytoid dendritic cells against tumour cells. Immunology 146(2):327–338. https://doi.org/10.1111/imm.12509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ehrenschwender M, Bittner S, Seibold K, Wajant H (2014) XIAP-targeting drugs re-sensitize PIK3CA-mutated colorectal cancer cells for death receptor-induced apoptosis. Cell Death Dis 5:e1570. https://doi.org/10.1038/cddis.2014.534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681. https://doi.org/10.1124/pr.58.3.10

    Article  CAS  PubMed  Google Scholar 

  12. Dhar R, Persaud SD, Mireles JR, Basu A (2009) Proteolytic cleavage of p70 ribosomal S6 kinase by caspase-3 during DNA damage-induced apoptosis. Biochemistry 48(7):1474–1480. https://doi.org/10.1021/bi801840s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25(1):65–80. https://doi.org/10.1038/cdd.2017.186

    Article  CAS  PubMed  Google Scholar 

  14. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681. https://doi.org/10.1038/nature03579

    Article  CAS  PubMed  Google Scholar 

  15. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, Roberts L, Tahir SK, Xiao Y, Yang X, Zhang H, Fesik S, Rosenberg SH, Elmore SW (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68(9):3421–3428. https://doi.org/10.1158/0008-5472.CAN-07-5836

    Article  CAS  PubMed  Google Scholar 

  16. Miller LA, Goldstein NB, Johannes WU, Walton CH, Fujita M, Norris DA, Shellman YG (2009) BH3 mimetic ABT-737 and a proteasome inhibitor synergistically kill melanomas through Noxa-dependent apoptosis. J Investig Dermatol 129(4):964–971. https://doi.org/10.1038/jid.2008.327

    Article  CAS  PubMed  Google Scholar 

  17. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, Chanrion M, Kelly GL, Gong JN, Moujalled DM, Bruno A, Csekei M, Paczal A, Szabo ZB, Sipos S, Radics G, Proszenyak A, Balint B, Ondi L, Blasko G, Robertson A, Surgenor A, Dokurno P, Chen I, Matassova N, Smith J, Pedder C, Graham C, Studeny A, Lysiak-Auvity G, Girard AM, Grave F, Segal D, Riffkin CD, Pomilio G, Galbraith LC, Aubrey BJ, Brennan MS, Herold MJ, Chang C, Guasconi G, Cauquil N, Melchiore F, Guigal-Stephan N, Lockhart B, Colland F, Hickman JA, Roberts AW, Huang DC, Wei AH, Strasser A, Lessene G, Geneste O (2016) The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538(7626):477–482. https://doi.org/10.1038/nature19830

    Article  PubMed  Google Scholar 

  18. Bhola PD, Letai A (2016) Mitochondria-judges and executioners of cell death sentences. Mol Cell 61(5):695–704. https://doi.org/10.1016/j.molcel.2016.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9(5):351–365. https://doi.org/10.1016/j.ccr.2006.03.027

    Article  CAS  PubMed  Google Scholar 

  20. Ni Chonghaile T, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A, Moore Vdel G, Deng J, Anderson KC, Richardson P, Tai YT, Mitsiades CS, Matulonis UA, Drapkin R, Stone R, Deangelo DJ, McConkey DJ, Sallan SE, Silverman L, Hirsch MS, Carrasco DR, Letai A (2011) Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334(6059):1129–1133. https://doi.org/10.1126/science.1206727

    Article  PubMed  Google Scholar 

  21. Galvez A, Morales MP, Eltit JM, Ocaranza P, Carrasco L, Campos X, Sapag-Hagar M, Diaz-Araya G, Lavandero S (2001) A rapid and strong apoptotic process is triggered by hyperosmotic stress in cultured rat cardiac myocytes. Cell Tissue Res 304(2):279–285. https://doi.org/10.1007/s004410100358

    Article  CAS  PubMed  Google Scholar 

  22. Michea L, Ferguson DR, Peters EM, Andrews PM, Kirby MR, Burg MB (2000) Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells. Am J Physiol Renal Physiol 278(2):F209-218. https://doi.org/10.1152/ajprenal.2000.278.2.F209

    Article  Google Scholar 

  23. Aamdal S, Fodstad O, Kaalhus O, Pihl A (1984) Reduced antineoplastic activity in mice of cisplatin administered with high salt concentration in the vehicle. J Natl Cancer Inst 73(3):743–752. https://doi.org/10.1093/jnci/73.3.743

    CAS  PubMed  Google Scholar 

  24. Smith E, Brock AP (1989) The effect of reduced osmolarity on platinum drug toxicity. Br J Cancer 59(6):873–875. https://doi.org/10.1038/bjc.1989.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bando T, Fujimura M, Kasahara K, Shibata K, Shirasaki H, Heki U, Iwasa K, Ueda A, Tomikawa S, Matsuda T (1997) Exposure to sorbitol induces resistance to cisplatin in human non-small-cell lung cancer cell lines. Anticancer Res 17(5A):3345–3348

    CAS  PubMed  Google Scholar 

  26. Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A (2007) BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12(2):171–185. https://doi.org/10.1016/j.ccr.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  27. Montero J, Letai A (2018) Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ 25(1):56–64. https://doi.org/10.1038/cdd.2017.183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ME is supported by Grants from Deutsche Forschungsgemeinschaft (DFG Grant EH 465/2-1), the Universitätsstiftung Helga und Erwin Hartl and the Medical Faculty of the University of Regensburg (ReForM-B-program).

Author information

Authors and Affiliations

Authors

Contributions

ME designed experiments, analyzed data and wrote the paper; DNC, CS and GK performed experiments. BS-T and SG obtained informed consent from patients and established malignant melanoma cell lines.

Corresponding author

Correspondence to Martin Ehrenschwender.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calance, D.N., Steixner, C., Gross, S. et al. Hypertonicity primes malignant melanoma cells for apoptosis. Apoptosis 23, 201–209 (2018). https://doi.org/10.1007/s10495-018-1446-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-018-1446-y

Keywords

Navigation