Skip to main content
Log in

Ceramide in the regulation of eryptosis, the suicidal erythrocyte death

  • THE ROLE OF SPHINGOLIPIDS AND LIPID RAFTS IN DETERMINING CELL FATE
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, a suicidal death characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine exposure at the cell surface. As eryptotic erythrocytes are rapidly cleared from circulating blood, excessive eryptosis may lead to anemia. Moreover, eryptotic erythrocytes may adhere to the vascular wall and thus impede microcirculation. Stimulators of eryptosis include osmotic shock, oxidative stress and energy depletion. Mechanisms involved in the stimulation eryptosis include ceramide formation which may result from phospholipase A2 dependent formation of platelet activating factor (PAF) with PAF dependent stimulation of sphingomyelinases. Enhanced erythrocytic ceramide formation is observed in fever, sepsis, HUS, uremia, hepatic failure, and Wilson’s disease. Enhanced eryptosis is further observed in iron deficiency, phosphate depletion, dehydration, malignancy, malaria, sickle-cell anemia, beta-thalassemia and glucose-6-phosphate dehydrogenase-deficiency. Moreover, eryptosis is triggered by osmotic shock and a wide variety of xenobiotics, which are again partially effective by enhancing ceramide abundance. Ceramide formation is inhibited by high concentrations of urea. As shown in Wilson’s disease, pharmacological interference with ceramide formation may be a therapeutic option in the treatment of eryptosis inducing clinical disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AE1:

Anion exchanger 1

AMP:

Adenosinmonophosphate

AMPK:

AMP activated kinase

GMP:

Cyclic guanosinmonophosphate

CXCL16:

CXC-Motiv-Chemokin 16

HUS:

Hemolytic uremic syndrome

G6PD:

Glucose-6-phosphate dehydrogenase

GLUT1:

Glucose transporter 1

PAF:

Platelet activating factor

PAK2:

p21-activated kinase 2

PDK1:

Phosphoinositide dependent kinase 1

TRPC6:

Transient receptor potential channel C6

References

  1. Arese P, Turrini F, Schwarzer E (2005) Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes. Cell Physiol Biochem 16:133–146

    CAS  PubMed  Google Scholar 

  2. Bosman GJ, Willekens FL, Werre JM (2005) Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16:1–8

    CAS  PubMed  Google Scholar 

  3. Kiefer CR, Snyder LM (2000) Oxidation and erythrocyte senescence. Curr Opin Hematol 7:113–116

    CAS  PubMed  Google Scholar 

  4. Lutz HU (2004) Innate immune and non-immune mediators of erythrocyte clearance. Cell Mol Biol (Noisy-le-grand) 50:107–116

    CAS  Google Scholar 

  5. Harrison HE, Bunting H, Ordway NK, Albrink WS (1947) The pathogenesis of the renal injury produced in the dog by hemoglobin or methemoglobin. J Exp Med 86:339–356

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Cimen MY (2008) Free radical metabolism in human erythrocytes. Clin Chim Acta 390:1–11

    CAS  PubMed  Google Scholar 

  7. Foller M, Bobbala D, Koka S, Huber SM, Gulbins E, Lang F (2009) Suicide for survival–death of infected erythrocytes as a host mechanism to survive malaria. Cell Physiol Biochem 24:133–140

    PubMed  Google Scholar 

  8. Lang F, Gulbins E, Lerche H, Huber SM, Kempe DS, Foller M (2008) Eryptosis, a window to systemic disease. Cell Physiol Biochem 22:373–380

    CAS  PubMed  Google Scholar 

  9. Lang E, Qadri SM, Lang F (2012) Killing me softly—suicidal erythrocyte death. Int J Biochem Cell Biol 44:1236–1243

    CAS  PubMed  Google Scholar 

  10. Boas FE, Forman L, Beutler E (1998) Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci USA 95:3077–3081

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    CAS  PubMed  Google Scholar 

  12. Kempe DS, Lang PA, Duranton C, Akel A, Lang KS, Huber SM, Wieder T, Lang F (2006) Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J 20:368–370

    CAS  PubMed  Google Scholar 

  13. Walker B, Towhid ST, Schmid E, Hoffmann SM, Abed M, Munzer P, Vogel S, Neis F, Brucker S, Gawaz M, Borst O, Lang F (2014) Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors. Am J Physiol Cell Physiol 306:C291–C297

    CAS  PubMed  Google Scholar 

  14. LaRocca TJ, Stivison EA, Hod EA, Spitalnik SL, Cowan PJ, Randis TM, Ratner AJ (2014) Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. MBio 5:e01251–14

  15. Browning JA, Robinson HC, Ellory JC, Gibson JS (2007) Deoxygenation-induced non-electrolyte pathway in red cells from sickle cell patients. Cell Physiol Biochem 19:165–174

    CAS  PubMed  Google Scholar 

  16. Foller M, Sopjani M, Mahmud H, Lang F (2008) Vanadate induced suicidal erythrocyte death. Kidney Blood Pres Res 21:87–93

    Google Scholar 

  17. Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, Koka S, Eisele K, Klarl BA, Rubben H, Schmid KW, Mann K, Hildenbrand S, Hefter H, Huber SM, Wieder T, Erhardt A, Haussinger D, Gulbins E, Lang F (2007) Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13:164–170

    CAS  PubMed  Google Scholar 

  18. Lang F, Abed M, Lang E, Foller M (2014) Oxidative stress and suicidal erythrocyte death. Antioxid Redox Signal 21:138–153

    CAS  PubMed  Google Scholar 

  19. Bissinger R, Lupescu A, Zelenak C, Jilani K, Lang F (2014) Stimulation of eryptosis by cryptotanshinone. Cell Physiol Biochem 34:432–442

    CAS  PubMed  Google Scholar 

  20. Jacobi J, Lang E, Bissinger R, Frauenfeld L, Modicano P, Faggio C, Abed M, Lang F (2014) Stimulation of erythrocyte cell membrane scrambling by mitotane. Cell Physiol Biochem 33:1516–1526

    CAS  PubMed  Google Scholar 

  21. Lupescu A, Bissinger R, Herrmann T, Oswald G, Jilani K, Lang F (2014) Induction of suicidal erythrocyte death by novobiocin. Cell Physiol Biochem 33:670–680

    CAS  PubMed  Google Scholar 

  22. Lupescu A, Bissinger R, Warsi J, Jilani K, Lang F (2014) Stimulation of erythrocyte cell membrane scrambling by gedunin. Cell Physiol Biochem 33:1838–1848

    CAS  PubMed  Google Scholar 

  23. Lupescu A, Jilani K, Zbidah M, Lang F (2013) Patulin-induced suicidal erythrocyte death. Cell Physiol Biochem 32:291–299

    CAS  PubMed  Google Scholar 

  24. Tesoriere L, Attanzio A, Allegra M, Cilla A, Gentile C, Livrea MA (2014) Oxysterol mixture in hypercholesterolemia-relevant proportion causes oxidative stress-dependent eryptosis. Cell Physiol Biochem 34:1075–1089

    CAS  PubMed  Google Scholar 

  25. Aguilar-Dorado IC, Hernandez G, Quintanar-Escorza MA, Maldonado-Vega M, Rosas-Flores M, Calderon-Salinas JV (2014) Eryptosis in lead-exposed workers. Toxicol Appl Pharmacol 281:195–202

    CAS  PubMed  Google Scholar 

  26. Gao M, Lau PM, Kong SK (2014) Mitochondrial toxin betulinic acid induces in vitro eryptosis in human red blood cells through membrane permeabilization. Arch Toxicol 88:755–768

    CAS  PubMed  Google Scholar 

  27. Hoelzle LE, Zeder M, Felder KM, Hoelzle K (2014) Pathobiology of mycoplasma suis. Vet J 202:20–25

    PubMed  Google Scholar 

  28. Oswald G, Alzoubi K, Abed M, Lang F (2014) Stimulation of suicidal erythrocyte death by ribavirin. Basic Clin Pharmacol Toxicol 114:311–317

    CAS  PubMed  Google Scholar 

  29. Zhang R, Xiang Y, Ran Q, Deng X, Xiao Y, Xiang L, Li Z (2014) Involvement of calcium, reactive oxygen species, and atp in hexavalent chromium-induced damage in red blood cells. Cell Physiol Biochem 34:1780–1791

    CAS  PubMed  Google Scholar 

  30. Malik A, Bissinger R, Jilani K, Lang F (2015) Stimulation of erythrocyte cell membrane scrambling by nystatin. Basic Clin Pharmacol Toxicol 116:47–52

  31. Bissinger R, Malik A, Jilani K, Lang F (2014) Triggering of erythrocyte cell membrane scrambling by salinomycin. Basic Clin Pharmacol Toxicol. doi:10.1111/bcpt.12250; [Epub ahead of print]

  32. Birka C, Lang PA, Kempe DS, Hoefling L, Tanneur V, Duranton C, Nammi S, Henke G, Myssina S, Krikov M, Huber SM, Wieder T, Lang F (2004) Enhanced susceptibility to erythrocyte “apoptosis” following phosphate depletion. Pflugers Arch 448:471–477

    CAS  PubMed  Google Scholar 

  33. Abed M, Feger M, Alzoubi K, Pakladok T, Frauenfeld L, Geiger C, Towhid ST, Lang F (2013) Sensitization of erythrocytes to suicidal erythrocyte death following water deprivation. Kidney Blood Press Res 37:567–578

    CAS  PubMed  Google Scholar 

  34. Pretorius E, Swanepoel AC, Buys AV, Vermeulen N, Duim W, Kell DB (2014) Eryptosis as a marker of Parkinson’s disease. Aging 6:788–819

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Foller M, Braun M, Qadri SM, Lang E, Mahmud H, Lang F (2010) Temperature sensitivity of suicidal erythrocyte death. Eur J Clin Invest 40:534–540

    PubMed  Google Scholar 

  36. Kempe DS, Akel A, Lang PA, Hermle T, Biswas R, Muresanu J, Friedrich B, Dreischer P, Wolz C, Schumacher U, Peschel A, Gotz F, Doring G, Wieder T, Gulbins E, Lang F (2007) Suicidal erythrocyte death in sepsis. J Mol Med 85:273–281

    CAS  PubMed  Google Scholar 

  37. Banerjee D, Saha S, Basu S, Chakrabarti A (2008) Porous red cell ultrastructure and loss of membrane asymmetry in a novel case of hemolytic anemia. Eur J Haematol 81:399–402

    CAS  PubMed  Google Scholar 

  38. Lang PA, Beringer O, Nicolay JP, Amon O, Kempe DS, Hermle T, Attanasio P, Akel A, Schafer R, Friedrich B, Risler T, Baur M, Olbricht CJ, Zimmerhackl LB, Zipfel PF, Wieder T, Lang F (2006) Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. J Mol Med 84:378–388

    PubMed  Google Scholar 

  39. Myssina S, Huber SM, Birka C, Lang PA, Lang KS, Friedrich B, Risler T, Wieder T, Lang F (2003) Inhibition of erythrocyte cation channels by erythropoietin. J Am Soc Nephrol 14:2750–2757

    CAS  PubMed  Google Scholar 

  40. Abed M, Artunc F, Alzoubi K, Honisch S, Baumann D, Foller M, Lang F (2014) Suicidal erythrocyte death in end-stage renal disease. J Mol Med 92:871–879

    CAS  PubMed  Google Scholar 

  41. Voelkl J, Alzoubi K, Mamar AK, Ahmed MS, Abed M, Lang F (2013) Stimulation of suicidal erythrocyte death by increased extracellular phosphate concentrations. Kidney Blood Press Res 38:42–51

    CAS  PubMed  Google Scholar 

  42. Zappulla D (2008) Environmental stress, erythrocyte dysfunctions, inflammation, and the metabolic syndrome: adaptations to CO2 increases? J Cardiometab Syndr 3:30–34

    Google Scholar 

  43. Calderon-Salinas JV, Munoz-Reyes EG, Guerrero-Romero JF, Rodriguez-Moran M, Bracho-Riquelme RL, Carrera-Gracia MA, Quintanar-Escorza MA (2011) Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol Cell Biochem 357:171–179

    CAS  PubMed  Google Scholar 

  44. Maellaro E, Leoncini S, Moretti D, Del Bello B, Tanganelli I, De Felice C, Ciccoli L (2013) Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol 50:489–495

    CAS  PubMed  Google Scholar 

  45. Nicolay JP, Schneider J, Niemoeller OM, Artunc F, Portero-Otin M, Haik G Jr, Thornalley PJ, Schleicher E, Wieder T, Lang F (2006) Stimulation of suicidal erythrocyte death by methylglyoxal. Cell Physiol Biochem 18:223–232

    CAS  PubMed  Google Scholar 

  46. Lang E, Gatidis S, Freise NF, Bock H, Kubitz R, Lauermann C, Orth HM, Klindt C, Schuier M, Keitel V, Reich M, Liu G, Schmidt S, Xu HC, Qadri SM, Herebian D, Pandyra AA, Mayatepek E, Gulbins E, Lang F, Haussinger D, Lang KS, Foller M, Lang PA (2015) Conjugated bilirubin triggers anemia by inducing erythrocyte death. Hepatology 61:275–284

  47. Qadri SM, Mahmud H, Lang E, Gu S, Bobbala D, Zelenak C, Jilani K, Siegfried A, Foller M, Lang F (2012) Enhanced suicidal erythrocyte death in mice carrying a loss-of-function mutation of the adenomatous polyposis coli gene. J Cell Mol Med 16:1085–1093

    CAS  PubMed  Google Scholar 

  48. Koka S, Lang C, Boini KM, Bobbala D, Huber S, Lang F (2008) Influence of chlorpromazine on eryptosis, parasitemia and survival of plasmodium berghei infected mice. Cell Physiol Biochem 22:261–268

    CAS  PubMed  Google Scholar 

  49. Koka S, Lang C, Niemoeller OM, Boini KM, Nicolay JP, Huber SM, Lang F (2008) Influence of NO synthase inhibitor L-NAME on parasitemia and survival of Plasmodium berghei infected mice. Cell Physiol Biochem 21:481–488

    CAS  PubMed  Google Scholar 

  50. de Jong K, Emerson RK, Butler J, Bastacky J, Mohandas N, Kuypers FA (2001) Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood 98:1577–1584

    PubMed  Google Scholar 

  51. Kean LS, Brown LE, Nichols JW, Mohandas N, Archer DR, Hsu LL (2002) Comparison of mechanisms of anemia in mice with sickle cell disease and beta-thalassemia: peripheral destruction, ineffective erythropoiesis, and phospholipid scramblase-mediated phosphatidylserine exposure. Exp Hematol 30:394–402

    CAS  PubMed  Google Scholar 

  52. Jimenez-Diaz MB, Ebert D, Salinas Y, Pradhan A, Lehane AM, Myrand-Lapierre ME, O’Loughlin KG, Shackleford DM, Justino de Almeida M, Carrillo AK, Clark JA, Dennis AS, Diep J, Deng X, Duffy S, Endsley AN, Fedewa G, Guiguemde WA, Gomez MG, Holbrook G, Horst J, Kim CC, Liu J, Lee MC, Matheny A, Martinez MS, Miller G, Rodriguez-Alejandre A, Sanz L, Sigal M, Spillman NJ, Stein PD, Wang Z, Zhu F, Waterson D, Knapp S, Shelat A, Avery VM, Fidock DA, Gamo FJ, Charman SA, Mirsalis JC, Ma H, Ferrer S, Kirk K, Angulo-Barturen I, Kyle DE, DeRisi JL, Floyd DM, Guy RK (2014) (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc Natl Acad Sci USA 111:E5455–E5462

  53. Ayi K, Turrini F, Piga A, Arese P (2004) Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood 104:3364–3371

    CAS  PubMed  Google Scholar 

  54. Chadebech P, Habibi A, Nzouakou R, Bachir D, Meunier-Costes N, Bonin P, Rodet M, Chami B, Galacteros F, Bierling P, Noizat-Pirenne F (2009) Delayed hemolytic transfusion reaction in sickle cell disease patients: evidence of an emerging syndrome with suicidal red blood cell death. Transfusion 49:1785–1792

    CAS  PubMed  Google Scholar 

  55. Lang KS, Roll B, Myssina S, Schittenhelm M, Scheel-Walter HG, Kanz L, Fritz J, Lang F, Huber SM, Wieder T (2002) Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell Physiol Biochem 12:365–372

    CAS  PubMed  Google Scholar 

  56. Wood BL, Gibson DF, Tait JF (1996) Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations. Blood 88:1873–1880

    CAS  PubMed  Google Scholar 

  57. Basu S, Banerjee D, Chandra S, Chakrabarti A (2009) Eryptosis in hereditary spherocytosis and thalassemia: role of glycoconjugates. Glycoconj J:in press

  58. Kuypers FA, Yuan J, Lewis RA, Snyder LM, Kiefer CR, Bunyaratvej A, Fucharoen S, Ma L, Styles L, de Jong K, Schrier SL (1998) Membrane phospholipid asymmetry in human thalassemia. Blood 91:3044–3051

    CAS  PubMed  Google Scholar 

  59. Ibrahim HA, Fouda MI, Yahya RS, Abousamra NK, Abd Elazim RA (2014) Erythrocyte phosphatidylserine exposure in beta-thalassemia. Lab Hematol 20:9–14

    PubMed  Google Scholar 

  60. Cappadoro M, Giribaldi G, O’Brien E, Turrini F, Mannu F, Ulliers D, Simula G, Luzzatto L, Arese P (1998) Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood 92:2527–2534

    CAS  PubMed  Google Scholar 

  61. Bruce LJ, Robinson HC, Guizouarn H, Borgese F, Harrison P, King MJ, Goede JS, Coles SE, Gore DM, Lutz HU, Ficarella R, Layton DM, Iolascon A, Ellory JC, Stewart GW (2005) Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1. Nat Genet 37:1258–1263

    CAS  PubMed  Google Scholar 

  62. Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, Margari L, Kamm C, Schneider SA, Huber SM, Pekrun A, Roebling R, Seebohm G, Koka S, Lang C, Kraft E, Blazevic D, Salvo-Vargas A, Fauler M, Mottaghy FM, Munchau A, Edwards MJ, Presicci A, Margari F, Gasser T, Lang F, Bhatia KP, Lehmann-Horn F, Lerche H (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118:2157–2168

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Rice L, Alfrey CP (2005) The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem 15:245–250

    CAS  PubMed  Google Scholar 

  64. Berg CP, Engels IH, Rothbart A, Lauber K, Renz A, Schlosser SF, Schulze-Osthoff K, Wesselborg S (2001) Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ 8:1197–1206

    CAS  PubMed  Google Scholar 

  65. Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier JP, Slomianny C, Sartiaux C, Alonso C, Huart JJ, Montreuil J, Ameisen JC (2001) Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 8:1143–1156

    CAS  PubMed  Google Scholar 

  66. Daugas E, Cande C, Kroemer G (2001) Erythrocytes: death of a mummy. Cell Death Differ 8:1131–1133

    CAS  PubMed  Google Scholar 

  67. Allan D, Michell RH (1977) Calcium ion-dependent diacylglycerol accumulation in erythrocytes is associated with microvesiculation but not with efflux of potassium ions. Biochem J 166:495–499

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Akel A, Hermle T, Niemoeller OM, Kempe DS, Lang PA, Attanasio P, Podolski M, Wieder T, Lang F (2006) Stimulation of erythrocyte phosphatidylserine exposure by chlorpromazine. Eur J Pharmacol 532:11–17

    CAS  PubMed  Google Scholar 

  69. Niemoeller OM, Akel A, Lang PA, Attanasio P, Kempe DS, Hermle T, Sobiesiak M, Wieder T, Lang F (2006) Induction of eryptosis by cyclosporine. Naunyn Schmiedebergs Arch Pharmacol 374:41–49

    CAS  PubMed  Google Scholar 

  70. Pant HC, Virmani M, Gallant PE (1983) Calcium-induced proteolysis of spectrin and band 3 protein in rat erythrocyte membranes. Biochem Biophys Res Commun 117:372–377

    CAS  PubMed  Google Scholar 

  71. Bookchin RM, Ortiz OE, Lew VL (1987) Activation of calcium-dependent potassium channels in deoxygenated sickled red cells. Prog Clin Biol Res 240:193–200

    CAS  PubMed  Google Scholar 

  72. Brugnara C, de Franceschi L, Alper SL (1993) Inhibition of Ca(2 +)-dependent K + transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. J Clin Invest 92:520–526

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Franco RS, Palascak M, Thompson H, Rucknagel DL, Joiner CH (1996) Dehydration of transferrin receptor-positive sickle reticulocytes during continuous or cyclic deoxygenation: role of KCl cotransport and extracellular calcium. Blood 88:4359–4365

    CAS  PubMed  Google Scholar 

  74. Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, Huber SM (2003) Role of Ca2 + -activated K + channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 285:C1553–C1560

    CAS  PubMed  Google Scholar 

  75. Bernhardt I, Weiss E, Robinson HC, Wilkins R, Bennekou P (2007) Differential effect of HOE642 on two separate monovalent cation transporters in the human red cell membrane. Cell Physiol Biochem 20:601–606

    CAS  PubMed  Google Scholar 

  76. Ivanova L, Bernhardt R, Bernhardt I (2008) Nongenomic effect of aldosterone on ion transport pathways of red blood cells. Cell Physiol Biochem 22:269–278

    CAS  PubMed  Google Scholar 

  77. Kaestner L, Bernhardt I (2002) Ion channels in the human red blood cell membrane: their further investigation and physiological relevance. Bioelectrochemistry 55:71–74

    CAS  PubMed  Google Scholar 

  78. Kaestner L, Tabellion W, Lipp P, Bernhardt I (2004) Prostaglandin E2 activates channel-mediated calcium entry in human erythrocytes: an indication for a blood clot formation supporting process. Thromb Haemost 92:1269–1272

    CAS  PubMed  Google Scholar 

  79. Lang PA, Kempe DS, Myssina S, Tanneur V, Birka C, Laufer S, Lang F, Wieder T, Huber SM (2005) PGE(2) in the regulation of programmed erythrocyte death. Cell Death Differ 12:415–428

    CAS  PubMed  Google Scholar 

  80. Foller M, Kasinathan RS, Koka S, Lang C, Shumilina E, Birnbaumer L, Lang F, Huber SM (2008) TRPC6 contributes to the Ca(2 +) leak of human erythrocytes. Cell Physiol Biochem 21:183–192

    PubMed  Google Scholar 

  81. Huber SM, Gamper N, Lang F (2001) Chloride conductance and volume-regulatory nonselective cation conductance in human red blood cell ghosts. Pflugers Arch 441:551–558

    CAS  PubMed  Google Scholar 

  82. Lang KS, Duranton C, Poehlmann H, Myssina S, Bauer C, Lang F, Wieder T, Huber SM (2003) Cation channels trigger apoptotic death of erythrocytes. Cell Death Differ 10:249–256

    CAS  PubMed  Google Scholar 

  83. Duranton C, Huber SM, Lang F (2002) Oxidation induces a Cl(-)-dependent cation conductance in human red blood cells. J Physiol 539:847–855

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Barvitenko NN, Adragna NC, Weber RE (2005) Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol Biochem 15:1–18

    CAS  PubMed  Google Scholar 

  85. Bracci R, Perrone S, Buonocore G (2002) Oxidant injury in neonatal erythrocytes during the perinatal period. Acta PaediatrSuppl 91:130–134

    CAS  Google Scholar 

  86. Bilmen S, Aksu TA, Gumuslu S, Korgun DK, Canatan D (2001) Antioxidant capacity of G-6-PD-deficient erythrocytes. Clin Chim Acta 303:83–86

    CAS  PubMed  Google Scholar 

  87. Damonte G, Guida L, Sdraffa A, Benatti U, Melloni E, Forteleoni G, Meloni T, Carafoli E, De Flora A (1992) Mechanisms of perturbation of erythrocyte calcium homeostasis in favism. Cell Calcium 13:649–658

    CAS  PubMed  Google Scholar 

  88. Mavelli I, Ciriolo M, Rossi L, Meloni T, Forteleoni G, De Flora A, Benatti U, Morelli M, Rotilio G (1984) Favism: a hemolytic disease associated with increased superoxide dismutase and decreased glutathione peroxidase activities in red blood cells. Eur J Biochem 139:8–13

    Google Scholar 

  89. Huber SM, Uhlemann AC, Gamper NL, Duranton C, Kremsner PG, Lang F (2002) Plasmodium falciparum activates endogenous Cl(-) channels of human erythrocytes by membrane oxidation. EMBO J 21:22–30

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Tanneur V, Duranton C, Brand VB, Sandu CD, Akkaya C, Kasinathan RS, Gachet C, Sluyter R, Barden JA, Wiley JS, Lang F, Huber SM (2006) Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. FASEB J 20:133–135

    CAS  PubMed  Google Scholar 

  91. Myssina S, Lang PA, Kempe DS, Kaiser S, Huber SM, Wieder T, Lang F (2004) Cl- channel blockers NPPB and niflumic acid blunt Ca(2 +)-induced erythrocyte ‘apoptosis’. Cell Physiol Biochem 14:241–248

    CAS  PubMed  Google Scholar 

  92. Mandal D, Baudin-Creuza V, Bhattacharyya A, Pathak S, Delaunay J, Kundu M, Basu J (2003) Caspase 3-mediated proteolysis of the N-terminal cytoplasmic domain of the human erythroid anion exchanger 1 (band 3). J Biol Chem 278:52551–52558

    CAS  PubMed  Google Scholar 

  93. Matarrese P, Straface E, Pietraforte D, Gambardella L, Vona R, Maccaglia A, Minetti M, Malorni W (2005) Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J 19:416–418

    CAS  PubMed  Google Scholar 

  94. Foller M, Sopjani M, Koka S, Gu S, Mahmud H, Wang K, Floride E, Schleicher E, Schulz E, Munzel T, Lang F (2009) Regulation of erythrocyte survival by AMP-activated protein kinase. FASEB J 23:1072–1080

    PubMed  Google Scholar 

  95. Foller M, Feil S, Hofmann F, Koka S, Kasinathan R, Nicolay J, Huber S, Feil R, Lang F (2008) Anemia of gene targeted mice lacking functional cGMP-dependent protein kinase type I. Proc Natl Acad Sci USA 105:6771–6778

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Kempe DS, Ackermann TF, Fischer SS, Koka S, Boini KM, Mahmud H, Foller M, Rosenblatt KP, Kuro O, Lang F (2009) Accelerated suicidal erythrocyte death in Klotho-deficient mice. Pflugers Arch 458:503–512

    CAS  PubMed  Google Scholar 

  97. Akel A, Wagner CA, Kovacikova J, Kasinathan RS, Kiedaisch V, Koka S, Alper SL, Bernhardt I, Wieder T, Huber SM, Lang F (2007) Enhanced suicidal death of erythrocytes from gene-targeted mice lacking the Cl-/HCO(3)(-) exchanger AE1. Am J Physiol Cell Physiol 292:C1759–C1767

    CAS  PubMed  Google Scholar 

  98. Foller M, Kasinathan RS, Koka S, Huber SM, Schuler B, Vogel J, Gassmann M, Lang F (2007) Enhanced susceptibility to suicidal death of erythrocytes from transgenic mice overexpressing erythropoietin. Am J Physiol Regul Integr Comp Physiol 293:R1127–R1134

    PubMed  Google Scholar 

  99. Lang PA, Kempe DS, Tanneur V, Eisele K, Klarl BA, Myssina S, Jendrossek V, Ishii S, Shimizu T, Waidmann M, Hessler G, Huber SM, Lang F, Wieder T (2005) Stimulation of erythrocyte ceramide formation by platelet-activating factor. J Cell Sci 118:1233–1243

    CAS  PubMed  Google Scholar 

  100. Foller M, Mahmud H, Koka S, Lang F (2008) Reduced Ca2 + entry and suicidal death of erythrocytes in PDK1 hypomorphic mice. Pflugers Arch 455:939–949

    PubMed  Google Scholar 

  101. Ghashghaeinia M, Cluitmans JC, Akel A, Dreischer P, Toulany M, Koberle M, Skabytska Y, Saki M, Biedermann T, Duszenko M, Lang F, Wieder T, Bosman GJ (2012) The impact of erythrocyte age on eryptosis. Br J Haematol 157:606–614

    CAS  PubMed  Google Scholar 

  102. Ghashghaeinia M, Cluitmans JC, Toulany M, Saki M, Koberle M, Lang E, Dreischer P, Biedermann T, Duszenko M, Lang F, Bosman GJ, Wieder T (2013) Age sensitivity of NFkappaB abundance and programmed cell death in erythrocytes induced by NFkappaB inhibitors. Cell Physiol Biochem 32:801–813

    CAS  PubMed  Google Scholar 

  103. Lang KS, Myssina S, Brand V, Sandu C, Lang PA, Berchtold S, Huber SM, Lang F, Wieder T (2004) Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death Differ 11:231–243

    CAS  PubMed  Google Scholar 

  104. Lang F, Gulbins E, Lang PA, Zappulla D, Foller M (2010) Ceramide in suicidal death of erythrocytes. Cell Physiol Biochem 26:21–28

    CAS  PubMed  Google Scholar 

  105. Chow SE, Kao CH, Liu YT, Cheng ML, Yang YW, Huang YK, Hsu CC, Wang JS (2014) Resveratrol induced ER expansion and ER caspase-mediated apoptosis in human nasopharyngeal carcinoma cells. Apoptosis 19:527–541

    CAS  PubMed  Google Scholar 

  106. Fonseca BM, Correia-da-Silva G, Teixeira NA (2013) The endocannabinoid anandamide induces apoptosis of rat decidual cells through a mechanism involving ceramide synthesis and p38 MAPK activation. Apoptosis 18:1526–1535

    CAS  PubMed  Google Scholar 

  107. Grassme H, Carpinteiro A, Edwards MJ, Gulbins E, Becker KA (2014) Regulation of the inflammasome by ceramide in cystic fibrosis lungs. Cell Physiol Biochem 34:45–55

    CAS  PubMed  Google Scholar 

  108. Morad SA, Cabot MC (2013) Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 13:51–65

    CAS  PubMed  Google Scholar 

  109. Pastukhov O, Schwalm S, Romer I, Zangemeister-Wittke U, Pfeilschifter J, Huwiler A (2014) Ceramide kinase contributes to proliferation but not to prostaglandin E2 formation in renal mesangial cells and fibroblasts. Cell Physiol Biochem 34:119–133

    CAS  PubMed  Google Scholar 

  110. Rossi A, Lord JM (2013) Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase. Apoptosis 18:1469–1480

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Towhid ST, Schmidt EM, Tolios A, Munzer P, Schmid E, Borst O, Gawaz M, Stegmann E, Lang F (2013) Stimulation of platelet death by vancomycin. Cell Physiol Biochem 31:102–112

    CAS  PubMed  Google Scholar 

  112. Barenholz Y, Thompson TE (1980) Sphingomyelins in bilayers and biological membranes. Biochim Biophys Acta 604:129–158

    CAS  PubMed  Google Scholar 

  113. Hakomori S (1983) Chemistry of Glycosphingolipids. Plenum Press, New York and London, pp 1–165

    Google Scholar 

  114. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Oninla VO, Breiden B, Babalola JO, Sandhoff K (2014) Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2. J Lipid Res 55:2606–2619

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Schissel SL, Jiang X, Tweedie-Hardman J, Jeong T, Camejo EH, Najib J, Rapp JH, Williams KJ, Tabas I (1998) Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 273:2738–2746

    CAS  PubMed  Google Scholar 

  117. Hurwitz R, Ferlinz K, Sandhoff K (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 375:447–450

    CAS  PubMed  Google Scholar 

  118. Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E (2008) Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J Med Chem 51:219–237

    CAS  PubMed  Google Scholar 

  119. Lang KS, Lang PA, Bauer C, Duranton C, Wieder T, Huber SM, Lang F (2005) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15:195–202

    CAS  PubMed  Google Scholar 

  120. Levy M, Futerman AH (2010) Mammalian ceramide synthases. IUBMB Life 62:347–356

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH Jr, Futerman AH (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem 277:35642–35649

    CAS  PubMed  Google Scholar 

  122. Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, Futerman AH (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem 283:5677–5684

    CAS  PubMed  Google Scholar 

  123. Lahiri S, Futerman AH (2005) LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J Biol Chem 280:33735–33738

    CAS  PubMed  Google Scholar 

  124. Mizutani Y, Kihara A, Igarashi Y (2006) LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem J 398:531–538

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Riebeling C, Allegood JC, Wang E, Merrill AH Jr, Futerman AH (2003) Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem 278:43452–43459

    CAS  PubMed  Google Scholar 

  126. Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390:263–271

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Grassme H, Riethmuller J, Gulbins E (2007) Biological aspects of ceramide-enriched membrane domains. Prog Lipid Res 46:161–170

    CAS  PubMed  Google Scholar 

  128. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    CAS  PubMed  Google Scholar 

  129. Reinehr R, Haussinger D (2008) CD95 ligation and intracellular membrane flow. Biochem J 413:e11–e12

    CAS  PubMed  Google Scholar 

  130. van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369:199–211

    PubMed Central  PubMed  Google Scholar 

  131. Goni FM, Alonso A (2002) Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531:38–46

    CAS  PubMed  Google Scholar 

  132. Lopez-Montero I, Monroy F, Velez M, Devaux PF (2010) Ceramide: from lateral segregation to mechanical stress. Biochim Biophys Acta 1798:1348–1356

    CAS  PubMed  Google Scholar 

  133. Dinkla S, Wessels K, Verdurmen WP, Tomelleri C, Cluitmans JC, Fransen J, Fuchs B, Schiller J, Joosten I, Brock R, Bosman GJ (2012) Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure. Cell Death Dis 3:e410

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Brand V, Koka S, Lang C, Jendrossek V, Huber SM, Gulbins E, Lang F (2008) Influence of amitriptyline on eryptosis, parasitemia and survival of Plasmodium berghei-infected mice. Cell Physiol Biochem 22:405–412

    CAS  PubMed  Google Scholar 

  135. Lang KS, Myssina S, Lang PA, Tanneur V, Kempe DS, Mack AF, Huber SM, Wieder T, Lang F, Duranton C (2004) Inhibition of erythrocyte phosphatidylserine exposure by urea and Cl-. Am J Physiol Renal Physiol 286:F1046–F1053

    CAS  PubMed  Google Scholar 

  136. Abed M, Towhid ST, Mia S, Pakladok T, Alesutan I, Borst O, Gawaz M, Gulbins E, Lang F (2012) Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells. Am J Physiol Cell Physiol 303:C991–C999

    CAS  PubMed  Google Scholar 

  137. Sheikine Y, Sirsjo A (2008) CXCL16/SR-PSOX–a friend or a foe in atherosclerosis? Atherosclerosis 197:487–495

    CAS  PubMed  Google Scholar 

  138. Ludwig A, Weber C (2007) Transmembrane chemokines: versatile ‘special agents’ in vascular inflammation. Thromb Haemost 97:694–703

    CAS  PubMed  Google Scholar 

  139. Ahmed MS, Langer H, Abed M, Voelkl J, Lang F (2013) The uremic toxin acrolein promotes suicidal erythrocyte death. Kidney Blood Press Res 37:158–167

    PubMed  Google Scholar 

  140. Nicolay JP, Gatz S, Liebig G, Gulbins E, Lang F (2007) Amyloid induced suicidal erythrocyte death. Cell Physiol Biochem 19:175–184

    CAS  PubMed  Google Scholar 

  141. Zbidah M, Lupescu A, Jilani K, Fajol A, Michael D, Qadri SM, Lang F (2012) Apigenin-induced suicidal erythrocyte death. J Agric Food Chem 60:533–538

    CAS  PubMed  Google Scholar 

  142. Malik A, Bissinger R, Calabro S, Faggio C, Jilani K, Lang F (2014) Aristolochic acid induced suicidal erythrocyte death. Kidney Blood Press Res 39:408–419

    CAS  PubMed  Google Scholar 

  143. Biswas D, Banerjee M, Sen G, Das JK, Banerjee A, Sau TJ, Pandit S, Giri AK, Biswas T (2008) Mechanism of erythrocyte death in human population exposed to arsenic through drinking water. Toxicol Appl Pharmacol 230:57–66

    CAS  PubMed  Google Scholar 

  144. Mahmud H, Foller M, Lang F (2009) Arsenic-induced suicidal erythrocyte death. Arch Toxicol 83:107–113

    CAS  PubMed  Google Scholar 

  145. Bissinger R, Malik A, Honisch S, Warsi J, Jilani K, Lang F (2014) In vitro sensitization of erythrocytes to programmed cell death following baicalein treatment. Toxins (Basel) 6:2771–2786

    CAS  Google Scholar 

  146. Lang E, Jilani K, Zelenak C, Pasham V, Bobbala D, Qadri SM, Lang F (2011) Stimulation of suicidal erythrocyte death by benzethonium. Cell Physiol Biochem 28:347–354

    CAS  PubMed  Google Scholar 

  147. Braun M, Foller M, Gulbins E, Lang F (2009) Eryptosis triggered by bismuth. Biometals 22:453–460

    CAS  PubMed  Google Scholar 

  148. Bentzen PJ, Lang E, Lang F (2007) Curcumin induced suicidal erythrocyte death. Cell Physiol Biochem 19:153–164

    CAS  PubMed  Google Scholar 

  149. Bobbala D, Koka S, Lang C, Boini KM, Huber SM, Lang F (2008) Effect of cyclosporine on parasitemia and survival of Plasmodium berghei infected mice. Biochem BiophysRes Commun 376:494–498

    CAS  Google Scholar 

  150. Abed M, Zoubi KA, Theurer M, Lang F (2013) Effect of dermaseptin on erythrocytes. Basic Clin Pharmacol Toxicol 113:347–352

    CAS  PubMed  Google Scholar 

  151. Calabro S, Alzoubi K, Bissinger R, Faggio C, Lang F (2014) Stimulation of suicidal erythrocyte death by ellipticine. Basic Clin Pharmacol Toxicol. doi:10.1111/bcpt.12350; [Epub ahead of print]

  152. Bissinger R, Modicano P, Frauenfeld L, Lang E, Jacobi J, Faggio C, Lang F (2013) Estramustine-induced suicidal erythrocyte death. Cell Physiol Biochem 32:1426–1436

    CAS  PubMed  Google Scholar 

  153. Jilani K, Enkel S, Bissinger R, Almilaji A, Abed M, Lang F (2013) Fluoxetine induced suicidal erythrocyte death. Toxins (Basel) 5:1230–1243

    CAS  Google Scholar 

  154. Eberhard M, Ferlinz K, Alizzi K, Cacciato PM, Faggio C, Foller M, Lang F (2010) FTY720-induced suicidal erythrocyte death. Cell Physiol Biochem 26:761–766

    CAS  PubMed  Google Scholar 

  155. Zbidah M, Lupescu A, Jilani K, Lang F (2013) Stimulation of suicidal erythrocyte death by fumagillin. Basic Clin Pharmacol Toxicol 112:346–351

    CAS  PubMed  Google Scholar 

  156. Lupescu A, Jilani K, Zelenak C, Zbidah M, Shaik N, Lang F (2012) Induction of programmed erythrocyte death by gambogic acid. Cell Physiol Biochem 30:428–438

    CAS  PubMed  Google Scholar 

  157. Jilani K, Qadri SM, Lang F (2013) Geldanamycin-induced phosphatidylserine translocation in the erythrocyte membrane. Cell Physiol Biochem 32:1600–1609

    CAS  PubMed  Google Scholar 

  158. Gatidis S, Foller M, Lang F (2009) Hemin-induced suicidal erythrocyte death. Ann Hematol 88:721–726

    CAS  PubMed  Google Scholar 

  159. Lupescu A, Jilani K, Zelenak C, Zbidah M, Qadri SM, Lang F (2012) Hexavalent chromium-induced erythrocyte membrane phospholipid asymmetry. Biometals 25:309–318

    CAS  PubMed  Google Scholar 

  160. Zbidah M, Lupescu A, Herrmann T, Yang W, Foller M, Jilani K, Lang F (2013) Effect of honokiol on erythrocytes. Toxicol In Vitro 27:1737–1745

    CAS  PubMed  Google Scholar 

  161. Ahmed MS, Abed M, Voelkl J, Lang F (2013) Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol 14:244

    PubMed Central  PubMed  Google Scholar 

  162. Calabro S, Alzoubi K, Bissinger R, Jilani K, Faggio C, Lang F (2014) Enhanced eryptosis following juglone exposure. Basic Clin Pharmacol Toxicol. doi:10.1111/bcpt.12340; [Epub ahead of print]

  163. Bhavsar SK, Bobbala D, Xuan NT, Foller M, Lang F (2010) Stimulation of suicidal erythrocyte death by alpha-lipoic acid. Cell Physiol Biochem 26:859–868

    CAS  PubMed  Google Scholar 

  164. Alzoubi K, Alktifan B, Oswald G, Fezai M, Abed M, Lang F (2014) Breakdown of phosphatidylserine asymmetry following treatment of erythrocytes with lumefantrine. Toxins (Basel) 6:650–664

    CAS  Google Scholar 

  165. Eisele K, Lang PA, Kempe DS, Klarl BA, Niemoller O, Wieder T, Huber SM, Duranton C, Lang F (2006) Stimulation of erythrocyte phosphatidylserine exposure by mercury ions. Toxicol Appl Pharmacol 210:116–122

    CAS  PubMed  Google Scholar 

  166. Mahmud H, Foller M, Lang F (2008) Stimulation of erythrocyte cell membrane scrambling by methyldopa. Kidney Blood Press Res 31:299–306

    CAS  PubMed  Google Scholar 

  167. Arnold M, Bissinger R, Lang F (2014) Mitoxantrone-induced suicidal erythrocyte death. Cell Physiol Biochem 34:1756–1767

    CAS  PubMed  Google Scholar 

  168. Arnold M, Lang E, Modicano P, Bissinger R, Faggio C, Abed M, Lang F (2014) Effect of nitazoxanide on erythrocytes. Basic Clin Pharmacol Toxicol 114:421–426

    CAS  PubMed  Google Scholar 

  169. Jilani K, Lupescu A, Zbidah M, Abed M, Shaik N, Lang F (2012) Enhanced apoptotic death of erythrocytes induced by the mycotoxin ochratoxin A. Kidney Blood Press Res 36:107–118

    CAS  PubMed  Google Scholar 

  170. Jilani K, Qadri SM, Zelenak C, Lang F (2011) Stimulation of suicidal erythrocyte death by oridonin. Arch Biochem Biophys 511:14–20

    CAS  PubMed  Google Scholar 

  171. Koka S, Bobbala D, Lang C, Boini KM, Huber SM, Lang F (2009) Influence of paclitaxel on parasitemia and survival of Plasmodium berghei infected mice. Cell Physiol Biochem 23:191–198

    CAS  PubMed  Google Scholar 

  172. Lang PA, Huober J, Bachmann C, Kempe DS, Sobiesiak M, Akel A, Niemoeller OM, Dreischer P, Eisele K, Klarl BA, Gulbins E, Lang F, Wieder T (2006) Stimulation of erythrocyte phosphatidylserine exposure by paclitaxel. Cell Physiol Biochem 18:151–164

    CAS  PubMed  Google Scholar 

  173. Alzoubi K, Honisch S, Abed M, Lang F (2014) Triggering of suicidal erythrocyte death by penta-O-galloyl-beta-d-glucose. Toxins (Basel) 6:54–65

    Google Scholar 

  174. Foller M, Biswas R, Mahmud H, Akel A, Shumilina E, Wieder T, Goetz F, Lang F (2009) Effect of peptidoglycans on erythrocyte survival. Int J Med Microbiol 299:75–85

    PubMed  Google Scholar 

  175. Bissinger R, Malik A, Warsi J, Jilani K, Lang F (2014) Piperlongumine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel) 6:2975–2988

    Google Scholar 

  176. Lupescu A, Jilani K, Zbidah M, Lang E, Lang F (2012) Enhanced Ca2 + entry, ceramide formation, and apoptotic death of erythrocytes triggered by plumbagin. J Nat Prod 75:1956–1961

    CAS  PubMed  Google Scholar 

  177. Abed M, Towhid ST, Shaik N, Lang F (2012) Stimulation of suicidal death of erythrocytes by rifampicin. Toxicology 302:123–128

    CAS  PubMed  Google Scholar 

  178. Lupescu A, Jilani K, Zbidah M, Lang F (2012) Induction of apoptotic erythrocyte death by rotenone. Toxicology 300:132–137

    CAS  PubMed  Google Scholar 

  179. Bissinger R, Modicano P, Alzoubi K, Honisch S, Faggio C, Abed M, Lang F (2014) Effect of saponin on erythrocytes. Int J Hematol 100:51–59

    CAS  PubMed  Google Scholar 

  180. Sopjani M, Foller M, Gulbins E, Lang F (2008) Suicidal death of erythrocytes due to selenium-compounds. Cell Physiol Biochem 22:387–394

    CAS  PubMed  Google Scholar 

  181. Lupescu A, Bissinger R, Jilani K, Lang F (2014) In vitro induction of erythrocyte phosphatidylserine translocation by the natural naphthoquinone shikonin. Toxins (Basel) 6:1559–1574

    CAS  Google Scholar 

  182. Lupescu A, Shaik N, Jilani K, Zelenak C, Lang E, Pasham V, Zbidah M, Plate A, Bitzer M, Foller M, Qadri SM, Lang F (2012) Enhanced erythrocyte membrane exposure of phosphatidylserine following sorafenib treatment: an in vivo and in vitro study. Cell Physiol Biochem 30:876–888

    CAS  PubMed  Google Scholar 

  183. Qadri SM, Bauer J, Zelenak C, Mahmud H, Kucherenko Y, Lee SH, Ferlinz K, Lang F (2011) Sphingosine but not sphingosine-1-phosphate stimulates suicidal erythrocyte death. Cell Physiol Biochem 28:339–346

    CAS  PubMed  Google Scholar 

  184. Alzoubi K, Calabro S, Faggio C, Lang F (2014) Stimulation of Suicidal Erythrocyte Death by Sulforaphane. Basic Clin Pharmacol Toxicol

  185. Zbidah M, Lupescu A, Yang W, Bosc A, Jilani K, Shaik N, Lang F (2012) Sulindac sulfide–induced stimulation of eryptosis. Cell Physiol Biochem 30:1072–1082

    CAS  PubMed  Google Scholar 

  186. Shaik N, Lupescu A, Lang F (2012) Sunitinib-sensitive suicidal erythrocyte death. Cell Physiol Biochem 30:512–522

    CAS  PubMed  Google Scholar 

  187. Abed M, Herrmann T, Alzoubi K, Pakladok T, Lang F (2013) Tannic acid induced suicidal erythrocyte death. Cell Physiol Biochem 32:1106–1116

    CAS  PubMed  Google Scholar 

  188. Zelenak C, Pasham V, Jilani K, Tripodi PM, Rosaclerio L, Pathare G, Lupescu A, Faggio C, Qadri SM, Lang F (2012) Tanshinone IIA stimulates erythrocyte phosphatidylserine exposure. Cell Physiol Biochem 30:282–294

    CAS  PubMed  Google Scholar 

  189. Nguyen TT, Foller M, Lang F (2009) Tin triggers suicidal death of erythrocytes. J Appl Toxicol 29:79–83

    CAS  PubMed  Google Scholar 

  190. Frauenfeld L, Alzoubi K, Abed M, Lang F (2014) Stimulation of erythrocyte cell membrane scrambling by mushroom tyrosinase. Toxins (Basel) 6:1096–1108

    CAS  Google Scholar 

  191. Jilani K, Abed M, Zelenak C, Lang E, Qadri SM, Lang F (2011) Triggering of erythrocyte cell membrane scrambling by ursolic acid. J Nat Prod 74:2181–2186

    CAS  PubMed  Google Scholar 

  192. Qadri SM, Eberhard M, Mahmud H, Föller M, Lang F (2009) Stimulation of ceramide formation and suicidal erythrocyte death by vitamin K(3) (menadione). Eur J Pharmacol 623:10–13

    CAS  PubMed  Google Scholar 

  193. Jilani K, Lupescu A, Zbidah M, Shaik N, Lang F (2013) Withaferin A-stimulated Ca2 + entry, ceramide formation and suicidal death of erythrocytes. Toxicol In Vitro 27:52–58

    CAS  PubMed  Google Scholar 

  194. Kiedaisch V, Akel A, Niemoeller OM, Wieder T, Lang F (2008) Zinc-induced suicidal erythrocyte death. Am J Clin Nutr 87:1530–1534

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the meticulous preparation of the manuscript by Tanja Loch and Lejla Subasic. Their research has been supported by the Deutsche Forschungsgemeinschaft, Nr. La 315/4-3, La 315/6-1, La 315/13-1.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, E., Bissinger, R., Gulbins, E. et al. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 20, 758–767 (2015). https://doi.org/10.1007/s10495-015-1094-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1094-4

Keywords

Navigation