Skip to main content

Advertisement

Log in

Mechanisms of adaptive angiogenesis to tissue hypoxia

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis is mostly an adaptive response to tissue hypoxia, which occurs under a wide variety of situations ranging from embryonic development to tumor growth. In general, angiogenesis is dependent on the accumulation of hypoxia inducible factors (HIFs), which are heterodimeric transcription factors of α and β subunits. Under normoxia, HIF heterodimers are not abundantly present due to oxygen dependent hydroxylation, polyubiquitination, and proteasomal degradation of α subunits. Under hypoxia, however, α subunits are stabilized and form heterodimers with HIF-1β which is not subject to oxygen dependent regulation. The accumulation of HIFs under hypoxia allows them to activate the expression of many angiogenic genes and therefore initiates the angiogenic process. In recent years, however, it has become clear that various other mechanisms also participate in fine tuning angiogenesis. In this review, I discuss the relationship between hypoxia and angiogenesis under five topics: (1) regulation of HIF-α abundance and activity by oxygen tension and other conditions including oxygen independent mechanisms; (2) hypoxia-regulated expression of angiogenic molecules by HIFs and other transcription factors; (3) responses of vascular cells to hypoxia; (4) angiogenic phenotypes due to altered HIF signaling in mice; and (5) role of the HIF pathway in pathological angiogenesis. Studies discussed under these topics clearly indicate that while mechanisms of oxygen-regulated HIF-α stability provide exciting opportunities for the development of angiogenesis or anti-angiogenesis therapies, it is also highly important to consider various other mechanisms for the optimization of these procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Smith LM, Golub AS, Pittman RN (2002) Interstitial PO(2) determination by phosphorescence quenching microscopy. Microcirculation 9(5):389–395

    PubMed  Google Scholar 

  2. Matschke K, Pfeiffer S, Mrowietz C et al (2005) Influence of ventricular pacing on myocardial oxygen tension. Microvasc Res 70(1–2):97–101

    PubMed  CAS  Google Scholar 

  3. Goetze JP, Gore A, Moller CH et al (2004) Acute myocardial hypoxia increases BNP gene expression. Faseb J 18(15):1928–1930

    PubMed  CAS  Google Scholar 

  4. Maltepe E, Simon MC (1998) Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J Mol Med 76(6):391–401

    PubMed  CAS  Google Scholar 

  5. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8(5):588–594

    PubMed  CAS  Google Scholar 

  6. Elson DA, Ryan HE, Snow JW et al (2000) Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res 60(21):6189–6195

    PubMed  CAS  Google Scholar 

  7. Lee SH, Wolf PL, Escudero R et al (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342(9):626–633

    PubMed  CAS  Google Scholar 

  8. Kelly BD, Hackett SF, Hirota K et al (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93(11):1074–1081

    PubMed  CAS  Google Scholar 

  9. Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 102(4):840–847

    PubMed  CAS  Google Scholar 

  10. Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59(1):15–26

    PubMed  Google Scholar 

  11. Hickey MM, Simon MC (2006) Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol 76:217–257

    PubMed  CAS  Google Scholar 

  12. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9(6):677–684

    PubMed  CAS  Google Scholar 

  13. Maxwell PH, Ratcliffe PJ (2002) Oxygen sensors and angiogenesis. Semin Cell Dev Biol 13(1):29–37

    PubMed  CAS  Google Scholar 

  14. Wood SM, Gleadle JM, Pugh CW et al (1996) The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J Biol Chem 271(25):15117–15123

    PubMed  CAS  Google Scholar 

  15. Wang GL, Jiang BH, Rue EA et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514

    PubMed  CAS  Google Scholar 

  16. Wiesener MS, Turley H, Allen WE et al (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92(7):2260–2268

    PubMed  CAS  Google Scholar 

  17. Heidbreder M, Frohlich F, Johren O et al (2003) Hypoxia rapidly activates HIF-3alpha mRNA expression. Faseb J 17(11):1541–1543

    PubMed  CAS  Google Scholar 

  18. Li QF, Wang XR, Yang YW et al (2006) Hypoxia upregulates hypoxia inducible factor (HIF)-3alpha expression in lung epithelial cells: characterization and comparison with HIF-1alpha. Cell Res 16(6):548–558

    PubMed  CAS  Google Scholar 

  19. Pugh CW, O’Rourke JF, Nagao M et al (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272(17):11205–11214

    PubMed  CAS  Google Scholar 

  20. Reisz-Porszasz S, Probst MR, Fukunaga BN et al (1994) Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol Cell Biol 14(9):6075–6086

    PubMed  CAS  Google Scholar 

  21. Sekine H, Mimura J, Yamamoto M et al (2006) Unique and overlapping transcriptional roles of arylhydrocarbon receptor nuclear translocator (Arnt) and Arnt2 in xenobiotic and hypoxic responses. J Biol Chem 281(49):37507–37516

    PubMed  CAS  Google Scholar 

  22. Huang LE, Gu J, Schau M et al (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2–dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95(14):7987–7992

    PubMed  CAS  Google Scholar 

  23. Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    PubMed  CAS  Google Scholar 

  24. Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    PubMed  CAS  Google Scholar 

  25. Epstein AC, Gleadle JM, McNeill LA et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107(1):43–54

    PubMed  CAS  Google Scholar 

  26. Ivan M, Haberberger T, Gervasi DC et al (2002) Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA 99(21):13459–13464

    PubMed  CAS  Google Scholar 

  27. Berra E, Benizri E, Ginouves A et al (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. Embo J 22(16):4082–4090

    PubMed  CAS  Google Scholar 

  28. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294(5545):1337–1340

    PubMed  CAS  Google Scholar 

  29. O’Rourke JF, Tian YM, Ratcliffe PJ et al (1999) Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1alpha. J Biol Chem 274(4):2060–2071

    PubMed  CAS  Google Scholar 

  30. Kallio PJ, Wilson WJ, O’Brien S et al (1999) Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 274(10):6519–6525

    PubMed  CAS  Google Scholar 

  31. Ema M, Taya S, Yokotani N et al (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94(9):4273–4278

    PubMed  CAS  Google Scholar 

  32. Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11(1):72–82

    PubMed  CAS  Google Scholar 

  33. Bracken CP, Fedele AO, Linke S et al (2006) Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. J Biol Chem 281(32):22575–22585

    PubMed  CAS  Google Scholar 

  34. Uchida T, Rossignol F, Matthay MA et al (2004) Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem 279(15):14871–14878

    PubMed  CAS  Google Scholar 

  35. Takahashi R, Kobayashi C, Kondo Y et al (2004) Subcellular localization and regulation of hypoxia-inducible factor-2alpha in vascular endothelial cells. Biochem Biophys Res Commun 317(1):84–91

    PubMed  CAS  Google Scholar 

  36. Park SK, Dadak AM, Haase VH et al (2003) Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor 1alpha (HIF-1alpha): role of cytoplasmic trapping of HIF-2alpha. Mol Cell Biol 23(14):4959–4971

    PubMed  CAS  Google Scholar 

  37. Maynard MA, Qi H, Chung J et al (2003) Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278(13):11032–11040

    PubMed  CAS  Google Scholar 

  38. Hirsila M, Koivunen P, Gunzler V et al (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278(33):30772–30780

    PubMed  Google Scholar 

  39. Makino Y, Uenishi R, Okamoto K et al (2007) Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells. J Biol Chem 282(19):14073–14082

    PubMed  CAS  Google Scholar 

  40. Makino Y, Kanopka A, Wilson WJ et al (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 277(36):32405–32408

    PubMed  CAS  Google Scholar 

  41. Makino Y, Cao R, Svensson K et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414(6863):550–554

    PubMed  CAS  Google Scholar 

  42. Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15(20):2675–2686

    PubMed  CAS  Google Scholar 

  43. Lando D, Peet DJ, Gorman JJ et al (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16(12):1466–1471

    PubMed  CAS  Google Scholar 

  44. Ivan M, Kondo K, Yang H et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468

    PubMed  CAS  Google Scholar 

  45. Masson N, Willam C, Maxwell PH et al (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. Embo J 20(18):5197–5206

    PubMed  CAS  Google Scholar 

  46. Koivunen P, Tiainen P, Hyvarinen J et al (2007) An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J Biol Chem 282(42):30544–30552

    PubMed  CAS  Google Scholar 

  47. Bruick RK (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev 17(21):2614–2623

    PubMed  CAS  Google Scholar 

  48. Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128

    PubMed  CAS  Google Scholar 

  49. Schofield CJ, Ratcliffe PJ (2005) Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 338(1):617–626

    PubMed  CAS  Google Scholar 

  50. Fong GH, Takeda K, (2008) Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ doi:10.1038/cdd.2008.10

  51. Gerald D, Berra E, Frapart YM et al (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118(6):781–794

    PubMed  CAS  Google Scholar 

  52. Pan Y, Mansfield KD, Bertozzi CC et al (2007) Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 27(3):912–925

    PubMed  CAS  Google Scholar 

  53. Metzen E, Zhou J, Jelkmann W et al (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14(8):3470–3481

    PubMed  CAS  Google Scholar 

  54. Koivunen P, Hirsila M, Remes AM et al (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282(7):4524–4532

    PubMed  CAS  Google Scholar 

  55. Selak MA, Armour SM, MacKenzie ED et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7(1):77–85

    PubMed  CAS  Google Scholar 

  56. Baek JH, Mahon PC, Oh J et al (2005) OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Mol Cell 17(4):503–512

    PubMed  CAS  Google Scholar 

  57. Ozer A, Wu LC, Bruick RK (2005) The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci USA 102(21):7481–7486

    PubMed  CAS  Google Scholar 

  58. Nakayama K, Frew IJ, Hagensen M et al (2004) Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 117(7):941–952

    PubMed  CAS  Google Scholar 

  59. Appelhoff RJ, Tian YM, Raval RR et al (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279(37):38458–38465

    PubMed  CAS  Google Scholar 

  60. Takeda K, Ho VC, Takeda H et al (2006) Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol 26(22):8336–8346

    PubMed  CAS  Google Scholar 

  61. Takeda K, Cowan A, Fong GH (2007) Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 116(7):774–781

    PubMed  CAS  Google Scholar 

  62. del Peso L, Castellanos MC, Temes E et al (2003) The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen. J Biol Chem 278(49):48690–48695

    PubMed  Google Scholar 

  63. Stiehl DP, Wirthner R, Koditz J et al (2006) Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem 281(33):23482–23491

    PubMed  CAS  Google Scholar 

  64. Marxsen JH, Stengel P, Doege K et al (2004) Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J 381(Pt 3):761–767

    PubMed  CAS  Google Scholar 

  65. Metzen E, Stiehl DP, Doege K et al (2005) Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: identification of a functional hypoxia-responsive element. Biochem J 387(Pt 3):711–717

    PubMed  CAS  Google Scholar 

  66. D’Angelo G, Duplan E, Boyer N et al (2003) Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem 278(40):38183–38187

    PubMed  CAS  Google Scholar 

  67. Zhong H, Chiles K, Feldser D et al (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60(6):1541–1545

    PubMed  CAS  Google Scholar 

  68. Treins C, Giorgetti-Peraldi S, Murdaca J et al (2002) Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 277(31):27975–27981

    PubMed  CAS  Google Scholar 

  69. Feldser D, Agani F, Iyer NV et al (1999) Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 59(16):3915–3918

    PubMed  CAS  Google Scholar 

  70. Zelzer E, Levy Y, Kahana C et al (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. Embo J 17(17):5085–5094

    PubMed  CAS  Google Scholar 

  71. Laughner E, Taghavi P, Chiles K et al (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21(12):3995–4004

    PubMed  CAS  Google Scholar 

  72. Richard DE, Berra E, Pouyssegur J (2000) Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 275(35):26765–26771

    PubMed  CAS  Google Scholar 

  73. Page EL, Robitaille GA, Pouyssegur J et al (2002) Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem 277(50):48403–48409

    PubMed  CAS  Google Scholar 

  74. Thornton RD, Lane P, Borghaei RC et al (2000) Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochem J 350(1):307–312

    PubMed  CAS  Google Scholar 

  75. Sandau KB, Zhou J, Kietzmann T et al (2001) Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J Biol Chem 276(43):39805–39811

    PubMed  CAS  Google Scholar 

  76. Fukuda R, Hirota K, Fan F et al (2002) Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277(41):38205–38211

    PubMed  CAS  Google Scholar 

  77. Mylonis I, Chachami G, Samiotaki M et al (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 281(44):33095–33106

    PubMed  CAS  Google Scholar 

  78. Gradin K, Takasaki C, Fujii-Kuriyama Y et al (2002) The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J Biol Chem 277(26):23508–23514

    PubMed  CAS  Google Scholar 

  79. Richard DE, Berra E, Gothie E et al (1999) p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274(46):32631–32637

    PubMed  CAS  Google Scholar 

  80. Arany Z, Huang LE, Eckner R et al (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 93(23):12969–12973

    PubMed  CAS  Google Scholar 

  81. Ema M, Hirota K, Mimura J et al (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. Embo J 18(7):1905–1914

    PubMed  CAS  Google Scholar 

  82. Land SC, Tee AR (2007) Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282(28):20534–20543

    PubMed  CAS  Google Scholar 

  83. Freedman SJ, Sun ZY, Kung AL et al (2003) Structural basis for negative regulation of hypoxia-inducible factor-1alpha by CITED2. Nat Struct Biol 10(7):504–512

    PubMed  CAS  Google Scholar 

  84. Blagosklonny MV, An WG, Romanova LY et al (1998) p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem 273(20):11995–11998

    PubMed  CAS  Google Scholar 

  85. Lisy K, Peet DJ (2008) Turn me on: regulating HIF transcriptional activity. Cell Death Differ. doi:10.1038/sj.cdd.4402315

  86. Jain S, Maltepe E, Lu MM et al (1998) Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev 73(1):117–123

    PubMed  CAS  Google Scholar 

  87. Compernolle V, Brusselmans K, Acker T et al (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8(7):702–710

    PubMed  CAS  Google Scholar 

  88. Rankin EB, Biju MP, Liu Q et al (2007) Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 117(4):1068–1077

    PubMed  CAS  Google Scholar 

  89. Gruber M, Hu CJ, Johnson RS et al (2007) Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci USA 104(7):2301–2306

    PubMed  CAS  Google Scholar 

  90. Ravi R, Mookerjee B, Bhujwalla ZM et al (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14(1):34–44

    PubMed  CAS  Google Scholar 

  91. Pan Y, Oprysko PR, Asham AM et al (2004) p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 23(29):4975–4983

    PubMed  CAS  Google Scholar 

  92. Sano M, Minamino T, Toko H et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446(7134):444–448

    PubMed  CAS  Google Scholar 

  93. Pi X, Garin G, Xie L et al (2005) BMK1/ERK5 is a novel regulator of angiogenesis by destabilizing hypoxia inducible factor 1alpha. Circ Res 96(11):1145–1151

    PubMed  CAS  Google Scholar 

  94. Cheng J, Kang X, Zhang S et al (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131(3):584–595

    PubMed  CAS  Google Scholar 

  95. Chen L, Uchida K, Endler A et al (2007) Mammalian tumor suppressor Int6 specifically targets hypoxia inducible factor 2 alpha for degradation by hypoxia- and pVHL-independent regulation. J Biol Chem 282(17):12707–12716

    PubMed  CAS  Google Scholar 

  96. Minchenko A, Caro J, (2000) Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: role of hypoxia responsive element. Mol Cell Biochem 208(1–2):53–62

    PubMed  CAS  Google Scholar 

  97. Salani D, Taraboletti G, Rosano L et al (2000) Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Am J Pathol 157(5):1703–1711

    PubMed  CAS  Google Scholar 

  98. Oikawa M, Abe M, Kurosawa H et al (2001) Hypoxia induces transcription factor ETS-1 via the activity of hypoxia-inducible factor-1. Biochem Biophys Res Commun 289(1):39–43

    PubMed  CAS  Google Scholar 

  99. Phillips RJ, Mestas J, Gharaee-Kermani M et al (2005) Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem 280(23):22473–22481

    PubMed  CAS  Google Scholar 

  100. Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    PubMed  CAS  Google Scholar 

  101. Zagzag D, Lukyanov Y, Lan L et al (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86(12):1221–1232

    PubMed  CAS  Google Scholar 

  102. Zagzag D, Krishnamachary B, Yee H et al (2005) Stromal cell-derived factor-1alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 65(14):6178–6188

    PubMed  CAS  Google Scholar 

  103. Suzuki A, Kusakai G, Shimojo Y et al (2005) Involvement of transforming growth factor-beta 1 signaling in hypoxia-induced tolerance to glucose starvation. J Biol Chem 280(36):31557–31563

    PubMed  CAS  Google Scholar 

  104. Green CJ, Lichtlen P, Huynh NT et al (2001) Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1. Cancer Res 61(6):2696–2703

    PubMed  CAS  Google Scholar 

  105. Yamakawa M, Liu LX, Date T et al (2003) Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93(7):664–673

    PubMed  CAS  Google Scholar 

  106. Khaliq A, Dunk C, Jiang J et al (1999) Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: molecular evidence for “placental hyperoxia” in intrauterine growth restriction. Lab Invest 79(2):151–170

    PubMed  CAS  Google Scholar 

  107. Yonekura H, Sakurai S, Liu X et al (1999) Placenta growth factor and vascular endothelial growth factor B and C expression in microvascular endothelial cells and pericytes. Implication in autocrine and paracrine regulation of angiogenesis. J Biol Chem 274(49):35172–35178

    PubMed  CAS  Google Scholar 

  108. Nilsson I, Shibuya M, Wennstrom S, (2004) Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 299(2):476–485

    PubMed  CAS  Google Scholar 

  109. Willam C, Koehne P, Jurgensen JS et al (2000) Tie2 receptor expression is stimulated by hypoxia and proinflammatory cytokines in human endothelial cells. Circ Res 87(5):370–377

    PubMed  CAS  Google Scholar 

  110. Zhang SX, Gozal D, Sachleben LR Jr. et al (2003) Hypoxia induces an autocrine-paracrine survival pathway via platelet-derived growth factor (PDGF)-B/PDGF-beta receptor/phosphatidylinositol 3-kinase/Akt signaling in RN46A neuronal cells. Faseb J 17(12):1709–1711

    PubMed  CAS  Google Scholar 

  111. Elvert G, Kappel A, Heidenreich R et al (2003) Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha ) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 278(9):7520–7530

    PubMed  CAS  Google Scholar 

  112. Le Bras A, Lionneton F, Mattot V et al (2007) HIF-2alpha specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26(53):7480–7489

    PubMed  CAS  Google Scholar 

  113. Pichiule P, Chavez JC, LaManna JC (2004) Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J Biol Chem 279(13):12171–12180

    PubMed  CAS  Google Scholar 

  114. Okuyama H, Krishnamachary B, Zhou YF et al (2006) Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem 281(22):15554–15563

    PubMed  CAS  Google Scholar 

  115. Li C, Issa R, Kumar P et al (2003) CD105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci 116(Pt 13):2677–2685

    PubMed  CAS  Google Scholar 

  116. Kaidi A, Qualtrough D, Williams AC et al (2006) Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 66(13):6683–6691

    PubMed  CAS  Google Scholar 

  117. Anelli V, Gault CR, Cheng AB et al (2008) Sphingosine Kinase 1 is up-regulated during hypoxia in U87MG glioma cells: role of hypoxia-inducible factors 1 and 2. J Biol Chem 283(6):3365–3375

    PubMed  CAS  Google Scholar 

  118. Sodhi CP, Phadke SA, Batlle D et al (2001) Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells: potentiation by high glucose. Diabetes 50(6):1482–1490

    PubMed  CAS  Google Scholar 

  119. Zhu Y, Denhardt DT, Cao H et al (2005) Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer. Oncogene 24(43):6555–6563

    PubMed  CAS  Google Scholar 

  120. Calvani M, Rapisarda A, Uranchimeg B et al (2006) Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood 107(7):2705–2712

    PubMed  CAS  Google Scholar 

  121. Kuwabara K, Ogawa S, Matsumoto M et al (1995) Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 92(10):4606–4610

    PubMed  CAS  Google Scholar 

  122. Carroll VA, Ashcroft M (2006) Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 66(12):6264–6270

    PubMed  CAS  Google Scholar 

  123. Kim KS, Rajagopal V, Gonsalves C et al (2006) A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells. J Immunol 177(10):7211–7224

    PubMed  CAS  Google Scholar 

  124. Gunaratnam L, Morley M, Franovic A et al (2003) Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J Biol Chem 278(45):44966–44974

    PubMed  CAS  Google Scholar 

  125. O’Toole EA, van Koningsveld R, Chen M et al (2008) Hypoxia induces epidermal keratinocyte matrix metalloproteinase-9 secretion via the protein kinase C pathway. J Cell Physiol 214(1):47–55

    PubMed  CAS  Google Scholar 

  126. Ikeda E, Achen MG, Breier G et al (1995) Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 270(34):19761–19766

    PubMed  CAS  Google Scholar 

  127. Forsythe JA, Jiang BH, Iyer NV et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613

    PubMed  CAS  Google Scholar 

  128. Takeda N, Maemura K, Imai Y et al (2004) Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ Res 95(2):146–153

    PubMed  CAS  Google Scholar 

  129. Gerber HP, Condorelli F, Park J et al (1997) Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272(38):23659–23667

    PubMed  CAS  Google Scholar 

  130. Marti HH, Risau W, (1998) Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA 95(26):15809–15814

    PubMed  CAS  Google Scholar 

  131. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454

    PubMed  CAS  Google Scholar 

  132. Kertesz N, Wu J, Chen TH et al (2004) The role of erythropoietin in regulating angiogenesis. Dev Biol 276(1):101–110

    PubMed  CAS  Google Scholar 

  133. Jaquet K, Krause K, Tawakol-Khodai M et al (2002) Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 64(2):326–333

    PubMed  CAS  Google Scholar 

  134. Morita M, Ohneda O, Yamashita T et al (2003) HLF/HIF-2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. Embo J 22(5):1134–1146

    PubMed  CAS  Google Scholar 

  135. Yu J, deMuinck ED, Zhuang Z et al (2005) Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci USA 102(31):10999–11004

    PubMed  CAS  Google Scholar 

  136. Coulet F, Nadaud S, Agrapart M et al (2003) Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 278(47):46230–46240

    PubMed  CAS  Google Scholar 

  137. Zhao X, Lu X, Feng Q, (2002) Deficiency in endothelial nitric oxide synthase impairs myocardial angiogenesis. Am J Physiol Heart Circ Physiol 283(6):H2371–2378

    PubMed  CAS  Google Scholar 

  138. Kappel A, Ronicke V, Damert A et al (1999) Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 93(12):4284–4292

    PubMed  CAS  Google Scholar 

  139. Duan LJ, Zhang-Benoit Y, Fong GH (2005) Endothelium-intrinsic requirement for Hif-2alpha during vascular development. Circulation 111(17):2227–2232

    PubMed  CAS  Google Scholar 

  140. Blau HM, Banfi A, (2001) The well-tempered vessel. Nat Med 7(5):532–534

    PubMed  CAS  Google Scholar 

  141. Kim JW, Gao P, Liu YC et al (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27(21):7381–7393

    PubMed  CAS  Google Scholar 

  142. Schmidt D, Textor B, Pein OT et al (2007) Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. Embo J 26(3):710–719

    PubMed  CAS  Google Scholar 

  143. Mizukami Y, Jo WS, Duerr EM et al (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11(9):992–997

    PubMed  CAS  Google Scholar 

  144. Cummins EP, Berra E, Comerford KM et al (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA 103(48):18154–18159

    PubMed  CAS  Google Scholar 

  145. Levy NS, Chung S, Furneaux H et al (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273(11):6417–6423

    PubMed  CAS  Google Scholar 

  146. Stein I, Itin A, Einat P et al (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18(6):3112–3119

    PubMed  CAS  Google Scholar 

  147. Ozawa K, Kondo T, Hori O et al (2001) Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J Clin Invest 108(1):41–50

    PubMed  CAS  Google Scholar 

  148. Asikainen TM, Schneider BK, Waleh NS et al (2005) Activation of hypoxia-inducible factors in hyperoxia through prolyl 4-hydroxylase blockade in cells and explants of primate lung. Proc Natl Acad Sci USA 102(29):10212–10217

    PubMed  CAS  Google Scholar 

  149. Brogi E, Schatteman G, Wu T et al (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest 97(2):469–476

    PubMed  CAS  Google Scholar 

  150. Waltenberger J, Mayr U, Pentz S et al (1996) Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 94(7):1647–1654

    PubMed  CAS  Google Scholar 

  151. LeCouter J, Kowalski J, Foster J et al (2001) Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412(6850):877–884

    PubMed  CAS  Google Scholar 

  152. Namiki A, Brogi E, Kearney M et al (1995) Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem 270(52):31189–31195

    PubMed  CAS  Google Scholar 

  153. Murohara T, Witzenbichler B, Spyridopoulos I et al (1999) Role of endothelial nitric oxide synthase in endothelial cell migration. Arteriosclerosis, thrombosis, and vascular biology 19(5):1156–1161

    PubMed  CAS  Google Scholar 

  154. Phillips PG, Birnby LM, Narendran A, (1995) Hypoxia induces capillary network formation in cultured bovine pulmonary microvessel endothelial cells. Am J Physiol 268(5 Pt 1):L789–800

    PubMed  CAS  Google Scholar 

  155. Matsushita H, Morishita R, Nata T et al (2000) Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB (NF-kappaB)-mediated bcl-2 suppression: in vivo evidence of the importance of NF-kappaB in endothelial cell regulation. Circ Res 86(9):974–981

    PubMed  CAS  Google Scholar 

  156. Stempien-Otero A, Karsan A, Cornejo CJ et al (1999) Mechanisms of hypoxia-induced endothelial cell death. Role of p53 in apoptosis. J Biol Chem 274(12):8039–8045

    PubMed  CAS  Google Scholar 

  157. An WG, Kanekal M, Simon MC et al (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 392(6674):405–408

    PubMed  CAS  Google Scholar 

  158. Dumont DJ, Fong GH, Puri MC et al (1995) Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 203(1):80–92

    PubMed  CAS  Google Scholar 

  159. Damert A, Miquerol L, Gertsenstein M et al (2002) Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development 129(8):1881–1892

    PubMed  CAS  Google Scholar 

  160. Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703

    PubMed  CAS  Google Scholar 

  161. Schoch HJ, Fischer S, Marti HH (2002) Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 125(Pt 11):2549–2557

    PubMed  Google Scholar 

  162. Vogel C, Bauer A, Wiesnet M et al (2007) Flt-1, but not Flk-1 mediates hyperpermeability through activation of the PI3-K/Akt pathway. J Cell Physiol 212(1):236–243

    PubMed  CAS  Google Scholar 

  163. Loberg RD, Vesely E, Brosius FC III (2002) Enhanced glycogen synthase kinase-3beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. J Biol Chem 277(44):41667–41673

    PubMed  CAS  Google Scholar 

  164. Lanner MC, Raper M, Pratt WM et al (2005) Heterotrimeric G proteins and the platelet-derived growth factor receptor-beta contribute to hypoxic proliferation of smooth muscle cells. Am J Respir Cell Mol Biol 33(4):412–419

    PubMed  CAS  Google Scholar 

  165. Sheares KK, Jeffery TK, Long L et al (2004) Differential effects of TGF-beta1 and BMP-4 on the hypoxic induction of cyclooxygenase-2 in human pulmonary artery smooth muscle cells. Am J Physiol Heart Circ Physiol 287(5):L919–927

    CAS  Google Scholar 

  166. Schultz K, Fanburg BL, Beasley D (2006) Hypoxia and hypoxia-inducible factor-1alpha promote growth factor-induced proliferation of human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 290(6):H2528–2534

    PubMed  CAS  Google Scholar 

  167. Lehti K, Allen E, Birkedal-Hansen H et al (2005) An MT1-MMP-PDGF receptor-beta axis regulates mural cell investment of the microvasculature. Genes Dev 19(8):979–991

    PubMed  CAS  Google Scholar 

  168. Corley KM Taylor CJ, Lilly B (2005) Hypoxia-inducible factor 1alpha modulates adhesion, migration, and FAK phosphorylation in vascular smooth muscle cells. J Cell Biochem 96(5):971–985

    Google Scholar 

  169. Foo SS, Turner CJ, Adams S et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124(1):161–173

    PubMed  CAS  Google Scholar 

  170. Liu Y, Wada R, Yamashita T et al (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106(8):951–961

    PubMed  CAS  Google Scholar 

  171. Allende ML, Yamashita T, Proia RL (2003) G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102(10):3665–3667

    PubMed  CAS  Google Scholar 

  172. Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8):2224–2234

    PubMed  CAS  Google Scholar 

  173. Burke-Gaffney A, Brooks AV, Bogle RG (2002) Regulation of chemokine expression in atherosclerosis. Vascul Pharmacol 38(5):283–292

    PubMed  CAS  Google Scholar 

  174. Morimoto H, Takahashi M, Izawa A et al (2006) Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction. Circ Res 99(8):891–899

    PubMed  CAS  Google Scholar 

  175. Heinrich SA, Messingham KA, Gregory MS et al (2003) Elevated monocyte chemoattractant protein-1 levels following thermal injury precede monocyte recruitment to the wound site and are controlled, in part, by tumor necrosis factor-alpha. Wound Repair Regen 11(2):110–119

    PubMed  Google Scholar 

  176. Clinton SK, Underwood R, Hayes L et al (1992) Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol 140(2):301–316

    PubMed  CAS  Google Scholar 

  177. van Weel V, Seghers L, de Vries MR et al (2007) Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arteriosclerosis, Thrombosis, Vasc Biol 27(6):1426–1432

    Google Scholar 

  178. Dvorak HF, Brown LF, Detmar M et al (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146(5):1029–1039

    PubMed  CAS  Google Scholar 

  179. Khurana R, Moons L, Shafi S et al (2005) Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation 111(21):2828–2836

    PubMed  CAS  Google Scholar 

  180. Hiratsuka S, Nakamura K, Iwai S et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2(4):289–300

    PubMed  CAS  Google Scholar 

  181. Arras M, Strasser R, Mohri M et al (1998) Tumor necrosis factor-alpha is expressed by monocytes/macrophages following cardiac microembolization and is antagonized by cyclosporine. Basic Res Cardiol 93(2):97–107

    PubMed  CAS  Google Scholar 

  182. Gordon S, Clarke S, Greaves D et al (1995) Molecular immunobiology of macrophages: recent progress. Curr Opin Immunol 7(1):24–33

    PubMed  CAS  Google Scholar 

  183. Sunderkotter C, Goebeler M, Schulze-Osthoff K et al (1991) Macrophage-derived angiogenesis factors. Pharmacol Ther 51(2):195–216

    PubMed  CAS  Google Scholar 

  184. Jansen PL, Rosch R, Jansen M et al (2007) Regulation of MMP-2 gene transcription in dermal wounds. J Invest Dermatol 127(7):1762–1767

    PubMed  CAS  Google Scholar 

  185. Li J, Post M, Volk R et al (2000) PR39, a peptide regulator of angiogenesis. Nat Med 6(1):49–55

    PubMed  CAS  Google Scholar 

  186. Nanka O, Valasek P, Dvorakova M et al (2006) Experimental hypoxia and embryonic angiogenesis. Dev Dyn 235(3):723–733

    PubMed  CAS  Google Scholar 

  187. Lee YM, Jeong CH, Koo SY et al (2001) Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev Dyn 220(2):175–186

    PubMed  CAS  Google Scholar 

  188. Iyer NV, Kotch LE, Agani F et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12(2):149–162

    PubMed  CAS  Google Scholar 

  189. Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. Embo J 17(11):3005–3015

    PubMed  CAS  Google Scholar 

  190. Maltepe E, Schmidt JV, Baunoch D et al (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386(6623):403–407

    PubMed  CAS  Google Scholar 

  191. Ramirez-Bergeron DL, Runge A, Adelman DM et al (2006) HIF-dependent hematopoietic factors regulate the development of the embryonic vasculature. Dev Cell 11(1):81–92

    PubMed  CAS  Google Scholar 

  192. Peng J, Zhang L, Drysdale L et al (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97(15):8386–8391

    PubMed  CAS  Google Scholar 

  193. Tian H, Hammer RE, Matsumoto AM et al (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12(21):3320–3324

    PubMed  CAS  Google Scholar 

  194. Scortegagna M, Ding K, Oktay Y et al (2003) Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet 35(4):331–340

    PubMed  CAS  Google Scholar 

  195. Tang N, Wang L, Esko J et al (2004) Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6(5):485–495

    PubMed  CAS  Google Scholar 

  196. gLicht AH, Muller-Holtkamp F, Flamme I et al (2006) Inhibition of hypoxia-inducible factor activity in endothelial cells disrupts embryonic cardiovascular development. Blood 107(2):584–590

    Google Scholar 

  197. Gnarra JR, Ward JM, Porter FD et al (1997) Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 94(17):9102–9107

    PubMed  CAS  Google Scholar 

  198. Yin Z, Haynie J, Yang X et al (2002) The essential role of Cited2, a negative regulator for HIF-1alpha, in heart development and neurulation. Proc Natl Acad Sci USA 99(16):10488–10493

    PubMed  CAS  Google Scholar 

  199. Miquerol L, Langille BL, Nagy A (2000) Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127(18):3941–3946

    PubMed  CAS  Google Scholar 

  200. Haase VH, Glickman JN, Socolovsky M et al (2001) Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc Natl Acad Sci USA 98(4):1583–1588

    PubMed  CAS  Google Scholar 

  201. Rankin EB, Higgins DF, Walisser JA et al (2005) Inactivation of the arylhydrocarbon receptor nuclear translocator (Arnt) suppresses von Hippel-Lindau disease-associated vascular tumors in mice. Mol Cell Biol 25(8):3163–3172

    PubMed  CAS  Google Scholar 

  202. Kim WY, Safran M, Buckley MR et al (2006) Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. Embo J 25(19):4650–4662

    PubMed  CAS  Google Scholar 

  203. Vincent KA, Shyu KG, Luo Y et al (2000) Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1alpha/VP16 hybrid transcription factor. Circulation 102(18):2255–2261

    PubMed  CAS  Google Scholar 

  204. Pajusola K, Kunnapuu J, Vuorikoski S et al (2005) Stabilized HIF-1alpha is superior to VEGF for angiogenesis in skeletal muscle via adeno-associated virus gene transfer. Faseb J 19(10):1365–1367

    PubMed  CAS  Google Scholar 

  205. Heinl-Green A, Radke PW, Munkonge FM et al (2005) The efficacy of a ‘master switch gene’ HIF-1alpha in a porcine model of chronic myocardial ischaemia. Eur Heart J 26(13):1327–1332

    PubMed  CAS  Google Scholar 

  206. Elson DA, Thurston G, Huang LE et al (2001) Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes Dev 15(19):2520–2532

    PubMed  CAS  Google Scholar 

  207. Aragones J, Schneider M, Van Geyte K et al (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40(2):170–180

    PubMed  CAS  Google Scholar 

  208. Kotch LE, Iyer NV, Laughner E et al (1999) Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209(2):254–267

    PubMed  CAS  Google Scholar 

  209. Hirose K, Morita M, Ema M et al (1996) cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol Cell Biol 16(4):1706–1713

    PubMed  CAS  Google Scholar 

  210. Oosthuyse B, Moons L, Storkebaum E et al (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28(2):131–138

    PubMed  CAS  Google Scholar 

  211. Thurston G, Suri C, Smith K et al (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science New York NY 286(5449):2511–2514

    CAS  Google Scholar 

  212. Leibovich SJ, Ross R, (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78(1):71–100

    PubMed  CAS  Google Scholar 

  213. Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15(11):599–607

    PubMed  CAS  Google Scholar 

  214. Simpson DM, Ross R (1972) The neutrophilic leukocyte in wound repair a study with antineutrophil serum. J Clin Invest 51(8):2009–2023

    PubMed  CAS  Google Scholar 

  215. Reichner JS, Albina JE (2004) Determination of the role of hypoxia-inducible factor 1 in wound healing. Methods Enzymol 381:527–538

    PubMed  CAS  Google Scholar 

  216. Davidson JD, Mustoe TA (2001) Oxygen in wound healing: more than a nutrient. Wound Repair Regen 9(3):175–177

    PubMed  CAS  Google Scholar 

  217. Trentin D, Hubbell J, Hall H (2005) Non-viral gene delivery for local and controlled DNA release. J Control Release 102(1):263–275

    PubMed  CAS  Google Scholar 

  218. Warnecke C, Griethe W, Weidemann A et al (2003) Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. Faseb J 17(9):1186–1188

    PubMed  CAS  Google Scholar 

  219. Willam C, Masson N, Tian YM et al (2002) Peptide blockade of HIFalpha degradation modulates cellular metabolism and angiogenesis. Proc Natl Acad Sci USA 99(16):10423–10428

    PubMed  CAS  Google Scholar 

  220. Banai S, Shweiki D, Pinson A et al (1994) Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc Res 28(8):1176–1179

    PubMed  CAS  Google Scholar 

  221. Lee MY, Ju WK, Cha JH et al (1999) Expression of vascular endothelial growth factor mRNA following transient forebrain ischemia in rats. Neurosci Lett 265(2):107–110

    PubMed  CAS  Google Scholar 

  222. Miraliakbari R, Francalancia NA, Lust RM et al (2000) Differences in myocardial and peripheral VEGF and KDR levels after acute ischemia. Ann Thorac Surg 69(6):1750–1753; discussion 1754

    Google Scholar 

  223. Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204(12):3037–3047

    PubMed  CAS  Google Scholar 

  224. Koponen JK, Kekarainen T, Heinonen SE et al (2007) Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol Ther 15(12):2172–2177

    PubMed  CAS  Google Scholar 

  225. Wu Y, Ip JE, Huang J et al (2006) Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ Res 99(3):315–322

    PubMed  CAS  Google Scholar 

  226. Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436

    PubMed  CAS  Google Scholar 

  227. Grunewald M, Avraham I, Dor Y et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189

    PubMed  CAS  Google Scholar 

  228. Huang Y, Hickey RP, Yeh JL et al (2004) Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. Faseb J 18(10):1138–1140

    PubMed  CAS  Google Scholar 

  229. Shyu KG, Wang MT, Wang BW et al (2002) Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res 54(3):576–583

    PubMed  CAS  Google Scholar 

  230. Patel TH, Kimura H, Weiss CR et al (2005) Constitutively active HIF-1alpha improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc Res 68(1):144–154

    PubMed  CAS  Google Scholar 

  231. Bosch-Marce M, Okuyama H, Wesley JB et al (2007) Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res 101(12):1310–1318

    PubMed  CAS  Google Scholar 

  232. Gray C, Packham IM, Wurmser F et al (2007) Ischemia is not required for arteriogenesis in zebrafish embryos. Arterioscler Thromb Vasc Biol 27(10):2135–2141

    PubMed  CAS  Google Scholar 

  233. Heil M, Eitenmuller I, Schmitz-Rixen T et al (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10(1):45–55

    PubMed  CAS  Google Scholar 

  234. Isner JM (1999) Cancer and atherosclerosis: the broad mandate of angiogenesis. Circulation 99(13):1653–1655

    PubMed  CAS  Google Scholar 

  235. Moulton KS, Vakili K, Zurakowski D et al (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100(8):4736–4741

    PubMed  CAS  Google Scholar 

  236. Vink A, Schoneveld AH, Lamers D et al (2007) HIF-1alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis 195(2):e69–e75

    PubMed  CAS  Google Scholar 

  237. Reynolds JD (2001) The management of retinopathy of prematurity. Paediatr Drugs 3(4):263–272

    PubMed  CAS  Google Scholar 

  238. Pe’er J, Shweiki D, Itin A et al (1995) Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab Invest 72(6):638–645

    PubMed  CAS  Google Scholar 

  239. Pierce EA, Avery RL, Foley ED et al (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92(3):905–909

    PubMed  CAS  Google Scholar 

  240. Aiello LP, Pierce EA, Foley ED et al (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92(23):10457–10461

    PubMed  CAS  Google Scholar 

  241. Ozaki H, Yu AY, Della N et al (1999) Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40(1):182–189

    PubMed  CAS  Google Scholar 

  242. Nakano M, Satoh K, Fukumoto Y et al (2007) Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res 100(5):662–669

    PubMed  CAS  Google Scholar 

  243. Ritter MR, Banin E, Moreno SK et al (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116(12):3266–3276

    PubMed  CAS  Google Scholar 

  244. Chang KH, Chan-Ling T, McFarland EL et al (2007) IGF binding protein-3 regulates hematopoietic stem cell and endothelial precursor cell function during vascular development. Proc Natl Acad Sci USA 104(25):10595–10600

    PubMed  CAS  Google Scholar 

  245. Lofqvist C, Chen J, Connor KM et al (2007) IGFBP3 suppresses retinopathy through suppression of oxygen-induced vessel loss and promotion of vascular regrowth. Proc Natl Acad Sci USA 104(25):10589–10594

    PubMed  CAS  Google Scholar 

  246. Lima e Silva R, Shen J, Hackett SF et al (2007) The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. Faseb J 21(12):3219–3230

    PubMed  CAS  Google Scholar 

  247. Kuwabara T, Cogan DG (1963) Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol 69:492–502

    PubMed  CAS  Google Scholar 

  248. Beltramo E, Berrone E, Giunti S et al (2006) Effects of mechanical stress and high glucose on pericyte proliferation, apoptosis and contractile phenotype. Exp Eye Res 83(4):989–994

    PubMed  CAS  Google Scholar 

  249. Ejaz S, Chekarova I, Ejaz A et al (2008) Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab 10(1):53–63

    PubMed  CAS  Google Scholar 

  250. Aiello LP, Avery RL, Arrigg PG et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–1487

    PubMed  CAS  Google Scholar 

  251. Wilkinson-Berka JL, Fletcher EL (2004) Angiotensin and bradykinin: targets for the treatment of vascular and neuro-glial pathology in diabetic retinopathy. Curr Pharm Des 10(27):3313–3330

    PubMed  CAS  Google Scholar 

  252. Butler JM, Guthrie SM, Koc M et al (2005) SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 115(1):86–93

    PubMed  CAS  Google Scholar 

  253. Peters CL, Morris CJ, Mapp PI et al (2004) The transcription factors hypoxia-inducible factor 1alpha and Ets-1 colocalize in the hypoxic synovium of inflamed joints in adjuvant-induced arthritis. Arthritis Rheum 50(1):291–296

    PubMed  CAS  Google Scholar 

  254. Hitchon C, Wong K, Ma G et al (2002) Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46(10):2587–2597

    PubMed  CAS  Google Scholar 

  255. Firestein GS (1999) Starving the synovium: angiogenesis and inflammation in rheumatoid arthritis. J Clin Invest 103(1):3–4

    PubMed  CAS  Google Scholar 

  256. Vaupel P, Kallinowski F, Okunieff P (1990) Blood flow, oxygen consumption and tissue oxygenation of human tumors. Adv Exp Med Biol 277:895–905

    PubMed  CAS  Google Scholar 

  257. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465

    PubMed  CAS  Google Scholar 

  258. Zhong H, De Marzo AM, Laughner E et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    PubMed  CAS  Google Scholar 

  259. Talks KL, Turley H, Gatter KC et al (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157(2):411–421

    PubMed  CAS  Google Scholar 

  260. Lim JH, Lee ES, You HJ et al (2004) Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion. Oncogene 23(58):9427–9431

    PubMed  CAS  Google Scholar 

  261. Blancher C, Moore JW, Robertson N et al (2001) Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3’-kinase/Akt signaling pathway. Cancer Res 61(19):7349–7355

    PubMed  CAS  Google Scholar 

  262. Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64(5–6):993–998

    PubMed  CAS  Google Scholar 

  263. Bocci G, Man S, Green SK et al (2004) Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2 monoclonal antibodies. Cancer Res 64(18):6616–6625

    PubMed  CAS  Google Scholar 

  264. Christensen JG, Vincent PW, Klohs WD et al (2005) Plasma vascular endothelial growth factor and interleukin-8 as biomarkers of antitumor efficacy of a prototypical erbB family tyrosine kinase inhibitor. Mol Cancer Ther 4(6):938–947

    PubMed  CAS  Google Scholar 

  265. Le QT, Sutphin PD, Raychaudhuri S et al (2003) Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res 9(1):59–67

    PubMed  CAS  Google Scholar 

  266. Jain S, Chakraborty G, Bulbule A et al (2007) Osteopontin: an emerging therapeutic target for anticancer therapy. Expert Opin Ther Targets 11(1):81–90

    PubMed  CAS  Google Scholar 

  267. Drevs J, Zirrgiebel U, Schmidt-Gersbach CI et al (2005) Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK):a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol 16(4):558–565

    PubMed  CAS  Google Scholar 

  268. Caine GJ, Blann AD, Stonelake PS et al (2003) Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1. Eur J Clin Invest 33(10):883–890

    PubMed  CAS  Google Scholar 

  269. Schliemann C, Bieker R, Thoennissen N et al (2007) Circulating angiopoietin-2 is a strong prognostic factor in acute myeloid leukemia. Leukemia 21(9):1901–1906

    PubMed  CAS  Google Scholar 

  270. Dudek AZ, Mahaseth H (2005) Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Cancer Invest 23(3):193–200

    PubMed  CAS  Google Scholar 

  271. Wrobel T, Mazur G, Kapelko K et al (2005) Endostatin serum level in acute myeloid leukemia. Neoplasma 52(2):182–184

    PubMed  CAS  Google Scholar 

  272. Bernardi R, Guernah I, Jin D et al (2006) PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442(7104):779–785

    PubMed  CAS  Google Scholar 

  273. Luttun A, Tjwa M, Moons L et al (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840

    PubMed  CAS  Google Scholar 

  274. Fischer C, Jonckx B, Mazzone M et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475

    PubMed  CAS  Google Scholar 

  275. Fukumura D, Xavier R, Sugiura T et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94(6):715–725

    PubMed  CAS  Google Scholar 

  276. Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14(16):1983–1991

    PubMed  CAS  Google Scholar 

  277. Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246

    PubMed  CAS  Google Scholar 

  278. Petit I, Jin D, Rafii S (2007) The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 28(7):299–307

    PubMed  CAS  Google Scholar 

  279. Li B, Sharpe EE, Maupin AB et al (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. Faseb J 20(9):1495–1497

    PubMed  CAS  Google Scholar 

  280. Grimm C, Wenzel A, Groszer M et al (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8(7):718–724

    PubMed  CAS  Google Scholar 

  281. Porta C, Subhra Kumar B, Larghi P et al (2007) Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol 604:67–86

    Article  PubMed  Google Scholar 

  282. Carmeliet P, Dor Y, Herbert JM et al (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394(6692):485–490

    PubMed  CAS  Google Scholar 

  283. Ryan HE, Poloni M, McNulty W et al (2000) Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 60(15):4010–4015

    PubMed  CAS  Google Scholar 

  284. Mizukami Y, Li J, Zhang X et al (2004) Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res 64(5):1765–1772

    PubMed  CAS  Google Scholar 

  285. Podar K, Anderson KC (2007) Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies. Cell Cycle 6(5):538–542

    PubMed  CAS  Google Scholar 

  286. Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–147

    PubMed  CAS  Google Scholar 

  287. Niethammer AG, Xiang R, Becker JC et al (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8(12):1369–1375

    PubMed  CAS  Google Scholar 

  288. Hu CJ, Wang LY, Chodosh LA et al (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374

    PubMed  CAS  Google Scholar 

  289. Kim HJ, Chung H, Yoo YG et al (2007) Inhibitor of DNA binding 1 activates vascular endothelial growth factor through enhancing the stability and activity of hypoxia-inducible factor-1alpha. Mol Cancer Res 5(4):321–329

    PubMed  CAS  Google Scholar 

  290. Xu Q, Briggs J, Park S et al (2005) Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24(36):5552–5560

    PubMed  CAS  Google Scholar 

  291. Jung JE, Lee HG, Cho IH et al (2005) STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. Faseb J 19(10):1296–1298

    PubMed  CAS  Google Scholar 

  292. Pore N, Liu S, Shu HK et al (2004) Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell 15(11):4841–4853

    PubMed  CAS  Google Scholar 

  293. Miki N, Ikuta M, Matsui T, (2004) Hypoxia-induced activation of the retinoic acid receptor-related orphan receptor alpha4 gene by an interaction between hypoxia-inducible factor-1 and Sp1. J Biol Chem 279(15):15025–15031

    PubMed  CAS  Google Scholar 

  294. Bracken CP, Whitelaw ML, Peet DJ (2005) Activity of hypoxia-inducible factor 2alpha is regulated by association with the NF-kappaB essential modulator. J Biol Chem 280(14):14240–14251

    PubMed  CAS  Google Scholar 

  295. Sanchez-Elsner T, Botella LM, Velasco B et al (2001) Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem 276(42):38527–38535

    PubMed  CAS  Google Scholar 

  296. Desbaillets I, Diserens AC, de Tribolet N et al (1999) Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 18(7):1447–1456

    PubMed  CAS  Google Scholar 

  297. Peng ZG, Zhou MY, Huang Y et al (2008) Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1alpha. Oncogene 27(6):839–847

    PubMed  CAS  Google Scholar 

  298. Mizukami Y, Fujiki K, Duerr EM et al (2006) Hypoxic regulation of vascular endothelial growth factor through the induction of phosphatidylinositol 3-kinase/Rho/ROCK and c-Myc. J Biol Chem 281(20):13957–13963

    PubMed  CAS  Google Scholar 

  299. Sanchez-Elsner T, Ramirez JR, Sanz-Rodriguez F et al (2004) A cross-talk between hypoxia and TGF-beta orchestrates erythropoietin gene regulation through SP1 and Smads. J Mol Biol 336(1):9–24

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Preparation of the manuscript was partially supported by grants-in-aid from American Heart Association and March of Dimes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Fong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, GH. Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11, 121–140 (2008). https://doi.org/10.1007/s10456-008-9107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-008-9107-3

Keywords

Navigation