Skip to main content
Log in

Pollen monitoring: minimum requirements and reproducibility of analysis

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Training, quality assurance (QA) and quality control (QC) play an important role in building competence in monitoring and research in aerobiology. The main goals of this paper were to: (a) formulate an updated Minimum Requirements Report for pollen monitoring; (b) carry out a pilot QC exercise of staff involved in pollen counting from various national networks in order to examine between analysts reproducibility and develop a methodology that can be used in future QC exercises. A questionnaire survey was sent to coordinators of participating pollen monitoring networks. In addition, a total of 45 technicians from 15 European countries participated in the pilot QC exercise. All technicians were instructed to analyse two slides containing the following pollen types: (a) Poaceae and Betula pollen grains in the north of Europe; (b) Poaceae and Olea pollen grains in the south of Europe. Minimum Recommendations were produced based on the results of the questionnaire survey, published literature, and the outcomes of a workshop. In the QC exercise, it was noticed that technicians who followed the Minimum Recommendations and examined at least 10 % of the slide tended to have better indicators of precision and accuracy than those technicians who did not follow the Minimum Recommendations. The proposed Minimum Recommendations will help to improve the quality of scientific work, particularly for those who are considering the setting up of new monitoring sites. The results of the pilot QC exercise will help to develop a methodology that can be used again in the future, thereby ensuring data quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraira V. (2002a). Desviación estándar y error estándar. Notas estadísticas, 28, 621–623.

    Google Scholar 

  • Abraira V. (2002b). Estimación: intervalos de confianza. Notas estadísticas, 28, 84–85.

    Google Scholar 

  • Albertini, R., Brighetti, M. A., Galán C., Torrigiani- Malaspina, T., Manfredi, M., Marcer M., et al. (2009). Manuale di Gestione e Qualità della Rete Italiana di Monitoraggio in Aerobiologia. R.I.M.A. ® Associazione Italiana di Aerobiologia®, a cura di Travaglini A., Albertini R., Zieger E. L.E.G.O., OZZANO EMILIA (BO).

  • Alcázar, P., Galán, C., Cariñanos, P., & Domínguez-Vilches, E. (1999). Diurnal variation of airborne pollen at two different heights. Journal of Investigational Allergology and Clinical Immunology, 9, 89–95.

    Google Scholar 

  • BAF. (1995). Airborne pollens and spores: A guide to trapping and counting. The British Aerobiology Federation: Aylesford. ISBN 0-9525617-0-0.

    Google Scholar 

  • Berti, G., Isocrono, D., Ropolo, L., Caranci, N., Cesare, M. R., Fossa, V., et al. (2009). An experience of data quality evaluation in pollen monitoring activities. Journal of Environmental Monitoring, 11, 788–792.

    Article  CAS  Google Scholar 

  • Cariñanos, P., Emberlin, J., Galan, C., & Dominguez-Vilches, E. (2000). Comparison of two pollen counting methods of slides from a Hirst type volumetric trap. Aerobiologia, 16, 339–346.

    Article  Google Scholar 

  • Carvalho, E., Sindt, C., Verdier, A., Galan, C., O’Donoghue, L., Parks, S., et al. (2008). Performance of the Coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains. Aerobiologia, 24, 191–201.

    Article  Google Scholar 

  • Comtois, P., Alcazar, P., & Néron, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15, 19–28.

    Article  Google Scholar 

  • Comtois, P., & Mandrioli, P. (1997). Pollen capture media: A comparative study. Aerobiologia, 13, 149–154.

    Article  Google Scholar 

  • EAS QC Working Group. (2011). Minimum requirements to manage aerobiological monitoring stations included in a national network involved in the EAN. IAA Newsletter, 72, 1.

    Google Scholar 

  • Galán, C. (2009). Summary of minutes: Quality control workshop minutes August 14th, 2008. In 4th ESA 2008 European symposium on aerobiology. Turku (Finland). IAA Newsletter (Vol. 67, p. 7).

  • Galán, C. (2010). EAS QC Group. IAA Newsletter, 69, 7.

    Google Scholar 

  • Galán, C., Cariñanos, P., Alcázar, P., & Domínguez-Vilches, E. (2007). Spanish aerobiology network (REA): Management and quality manual. Córdoba: Servicio de publicaciones de la Universidad de Córdoba.

    Google Scholar 

  • Galán, C., & Domínguez-Vilches, E. (1997). The capture media in aerobiological sampling. Aerobiologia, 13, 155–160.

    Article  Google Scholar 

  • Galán, C., Emberlin, J., Domínguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative-analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana, 34, 189–198.

    Article  Google Scholar 

  • Gottardini, E., Cristofolini, F., Cristofori, A., Vannini, A., & Ferretti, M. (2009). Sampling bias and sampling errors in pollen counting in aerobiological monitoring in Italy. Journal of Environmental Monitoring, 11, 751–755.

    Article  CAS  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  • ISO 5725. (1994). Accuracy (trueness and precision) of measurement methods and results.

  • Jäger, S., Mandroli, P., Spieksma, F., Emberlin, J., Hjelmroos, M., Rantio-Lehtimaki, A., et al. (1995). News. Aerobiologia, 11, 69–70.

    Article  Google Scholar 

  • Jato, V., Rodriguez-Rajo, F. J., Alcazar, P., de Nuntiis, P., Galan, C., & Mandrioli, P. (2006). May the definition of pollen season influence aerobiological results? Aerobiologia, 22, 13–25.

    Article  Google Scholar 

  • Käpylä, M. (1989). Adhesives and mounting media in aerobiological sampling. Grana, 28, 215–218.

    Article  Google Scholar 

  • Käpylä, M., & Penttinen, A. (1981). An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana, 20, 131–141.

    Article  Google Scholar 

  • Leuschner, R. M. (1999). Comparison between pollen counts at ground and at roof level in Basel (Switzerland). Aerobiologia, 15, 143–147.

    Article  Google Scholar 

  • Mäkinen, Y. (1981). Random sampling in the study of atmospheric slides. Rep Aerobiology Laboratory Turku University, 5, 27–43.

    Google Scholar 

  • Mandrioli, P. (1994). Metodica di campionamento dei granuli pollinici e delle spore fungine aerodisperse. In Monitoraggio aerobiologico in Emilia-Romagna. Collana “Contributi”, Regione Emilia-Romagna.

  • Mandrioli, P., Comtois, P., Domínguez-Vilches, E., Galán-Soldevilla, C., Syzdek, L. D., & Isard, S. A. (1998). Sampling: Principles and techniques. In P. Mandrioli, P. Comtois, & V. Levizzani (Eds.), Methods in aerobiology (p. 261). Bologna: Pitagora Editrice.

    Google Scholar 

  • Mandrioli, P., & Puppi, G. (1978). Method for sampling airborne pollen grains and fungal spores. In Aerobiological Monitoring in the Emilia-Romagna Region. Series “Studies and Documentation” (Vol. 13, p. 79). Regione Emilia-Romagna press (in Italian).

  • Ogden, E. C., Raynor, G. S., Hayes, J. V., Lewis, D. M., & Haines, J. H. (1976). Manual for sampling airborne pollen. New York: Hafner Press.

    Google Scholar 

  • Oteros, J., Galán, C., Alcázar, P., & Domínguez-Vilches, E. (2013). Quality control in bio-monitoring networks, Spanish Aerobiology Network. Science of the Total Environment, 443, 559–565.

    Article  CAS  Google Scholar 

  • PAACB (Pan American Aerobiology Certification Board) (2003). Certification program for spore analysts. http://www.paaa.org/paacb.html.

  • Pedersen, B., & Moseholm, L. (1993). Precision of the daily pollen count. Identifying sources of variation using variance component models. Aerobiologia, 9, 15–26.

    Article  Google Scholar 

  • Rantio-Lehtimäki, A., Koivikko, A., Kupias, R., Mäkinen, Y., & Pohjola, A. (1991). Significance of sampling height of airborne particles for aerobiological information. Allergy, 46, 68–76.

    Article  Google Scholar 

  • Scheifinger, H., Belmonte, J., Celenk, S., Damialis, A., Dechamp, C., Garcia-Mozo, H., et al. (2013). Monitoring, modelling and forecasting of the pollen season. In M. Sofiev & K. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impact. The Netherlands: Springer.

    Google Scholar 

  • Sikoparija, B., Pejak-Sikoparija, T., Radisic, P., Smith, M., & Galán, C. (2011). The effect of changes to the method of estimating the pollen count from aerobiological samples. Journal of Environmental Monitoring, 13, 384–390.

    Article  CAS  Google Scholar 

  • Siljamo, P., Sofiev, M., Filatova, E., Grewling, Ł., Jäger, S., Khoreva, E., et al. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. International Journal of Biometeorology, 57(1), 125–136.

    Article  Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., et al. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International Journal of Biometeorology, 57(1), 45–58.

    Article  CAS  Google Scholar 

  • Spetz, G. (1995). Improving precision of rubber test methods: Part 3—Tensile test. Polymer Testing, 14, 13–34.

    Article  CAS  Google Scholar 

  • Spieksma, F. T. M., van Noort, P., & Nikkels, H. (2000). Influence of nearby stands of Artemisia on the street-level versus roof-top-level ratio’s airborne pollen quantities. Aerobiologia, 16, 21–24.

    Article  Google Scholar 

  • Starink, R. J., & Visser, R. G. (2010). Interlaboratory studies: Protocol for the organisation, statistics and evaluation. Institute for Interlaboratory Studies (I.I.S.). The Netherlands.

  • Tormo, R., Munoz, A., & Silva, I. (1996). Sampling in aerobiology. Differences between traverses along the length of the slide in Hirst spore trap. Aerobiologia, 12, 161–166.

    Article  Google Scholar 

  • Velasco-Jiménez, M. J., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Cordoba (south-western Spain). Aerobiologia, 29(1), 113–120.

    Article  Google Scholar 

  • Vogel, H., Pauling, A., & Vogel, B. (2008). Numerical simulation of birch pollen dispersion with an operational weather forecast system. International Journal of Biometeorology, 52, 805–814.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the EAS QC Working Group, for their important contribution on this topic in the frame of the European Aerobiology Society (EAS), and also to all counters from different institutions involved in the QC exercise: Aerobiology Laboratuary of Uludag University, Bursa, Turkey; Austrian Pollen Information Service; Croatian National Institute of Public Health; Finnish Pollen Network; German Pollen Information Service; Italian Aerobiological Association; Environment Protection Agency of Bolzano, Italy; Laboratory for Palynology in Novi Sad, Serbia; MeteoSwiss; Polish Aerobiology Network; Portuguese Aerobiology Network; Réseau National de Surveillance Aérobiologique; Spanish Aerobiology Network; UK Pollen and Aerobiology Research Unit; Ukrainian Association of Aerobiologists; University of Macedonia.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to C. Galán.

Appendix

Appendix

EAS QC Working Group (http://eas.polleninfo.org/): G. Frenguelli, Italy; C. Galán, Spain; R. Gehrig, Switzerland; A.M. Pessi, Finland; C. Rogers, USA; M. Saar, Estonia; M. Smith, UK/Austria; D. Zühlke, Germany.

The following counters participated in the QC exercise: K. Bastl, O. Bilous, A. Brighetti, E. Bucher, E. Caeiro, I. Câmara, S. Celenk, I. Dawson, N. Dupuy, R. Gehrig, M.J. Graber, R. Ferro, S. Häkkilä, M. Hauser, I. Hrga, J. Juntunen, M. Kmenta, L. Kremenska, V. Kofler, O. Mazur, M. Moersen, D. Myszkowska, G. Oliver, O. Palamarchuk, S. Pätsi, A.M. Pessi, B. Pietragalla, M. Prentovic, P. Radisic, A. Rantio-Lehtimäki, V. Rodinkova, S. Saaranen, K. Saarinen, Ch. Sallin, B. Sikoparija, Ch. Sindt, L. Slobodianiuk, M. Smith, M. Snezana, B. Stjepanovic, M.C. Torres, A. Travaglini, M.J. Velasco, R. Wachter, J. Weckström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galán, C., Smith, M., Thibaudon, M. et al. Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30, 385–395 (2014). https://doi.org/10.1007/s10453-014-9335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-014-9335-5

Keywords

Navigation