Skip to main content
Log in

Dispersion of the bio-aerosol produced by the oak processionary moth

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The oak processionary moth (Thaumetopoea processionea L.) is found in oak forests in most European countries. The caterpillars bear urticating hairs (setae) as a chemical defence. These hairs break off and are small enough to become airborne and be transported by the wind. Upon contact with humans the toxin can cause an allergic reaction that ranges from a skin rash to respiratory distress. In order to measure the terminal settling velocity of this bioaerosol, we used a small elutriator and tested its functionality with particles of known aerodynamic diameter. We determined that the mean settling velocity of the setae is about 1 cm/s, corresponding to an aerodynamic diameter of 19 μm for setae with a diameter of 6 μm and a length of 190 μm. The dispersion of the hairs in the atmosphere for a typical summer day was calculated by means of an Eulerian model. The results of this calculation revealed that the maximum concentrations in the atmosphere on a typical summer day reach 20–30% of the concentration found directly at the source. Those maximum concentrations are reached at a distance from the source that varies between 174 and 562 m, depending on the atmospheric stability and the settling velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The name ‘processionary moth’ derives from a unique behaviour of the caterpillars, i.e. their moving in large processions, head to tail. This behaviour is most noticeable when the larvae crawl to the crowns of the oak trees to feed on leaves.

References

  • Adrian, G., & Fiedler, F. (1991). Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations. Contributions to Atmospheric Physics, 64, 27–48.

    Google Scholar 

  • Baron, P. A. (1993). Measurement of asbestos and other fibers, aerosol measurement: Principles, techniques, and applications (pp. 560–590) New York: Van Nostrand Reinhold.

    Google Scholar 

  • Cox, R. G. (1970). The motion of long slender bodies in a viscous fluid 1: General theory. Journal of Fluid Mechanics, 44, 791–810.

    Article  Google Scholar 

  • Ducombs, G., Lamy, M., Bergaud, J.-J., Tamisier, J.-M., Gervais, C., & Texier, L. (1979). La chenille processionnaire (Thaumetopoea pityocampa Schiff. Lépidoptéres) et l’homme: Étude morphologique de l’appareil urticant. Enquête épidémiologique. Annales de Dermatologie et de Vénéréologie, 106, 769–778.

    CAS  Google Scholar 

  • Gäbler, H. (1954). Die Prozessionsspinner. (Wittenberg Lutherstadt: A. Ziemsen Verlag), 3–7, 29–37.

  • Goldsmith, L., & Baden, H. (1970). The mechanical properties of hair. I. The dynamic sonic modulus. Journal of Investigative Dermatology, 55, 256–259.

    Article  CAS  Google Scholar 

  • Hammer, M.-U., Vogel, B., & Vogel, H. (2002). Findings on H 2 O 2/HNO 3 as an indicator for ozone sensitivity in Baden-Württemberg. Berlin-Brandenburg and the Po valley based on numerical simulations. Journal of Geophysical Research, 107, 8190. doi:10.1029/2000JD000211.

    Article  CAS  Google Scholar 

  • Helbig, N., Vogel, B., Vogel, H., & F. Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 20, 3–19.

    Article  Google Scholar 

  • Hesler, L. S., Logan, T. M., Benenson, M. W., & Moser, C. (1999). Acute dermatitis from oak processionary caterpillars in a U.S. military community in Germany. Military Medicine, 164, 767–770.

    CAS  Google Scholar 

  • Lamy, M., Novak, F., Duboscq, M. F., Ducombs, G., & Maleville, J. (1988). La chenille processionnaire du chêne (Thaumetopoea processionea L.) et l’homme: Appareil urticant et mode d’action. Annales de Dermatologie Et De Vénéréologie, 115, 1023–1032.

    CAS  Google Scholar 

  • Lenz, C.-J. (1996). Energieumsetzungen an der Erdoberfläche in gegliedertem Gelände. Germany: Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung der Universität Karlsruhe (TH).

    Google Scholar 

  • Maier, H., Spiegel, W., Kinaciyan, T., Krehan, H., Cabaj, A., Schopf, A., & Hönigsmann, H. (2003). Contact Dermatitis and Allergy: The oak processionary caterpillar as the cause of an epidemic airborne disease: Survey and analysis. British Journal of Dermatology, 149, 990–997.

    Article  CAS  Google Scholar 

  • Maksymov, J. K. (1978). Thaumetopoeidae, Prozessionspinner. In W. Schwenke (Ed.), Die Forstschädlinge Europas. (pp. 391–404). Hamburg and Berlin: Verlag Paul Parey).

    Google Scholar 

  • Nester, K., Panitz, H.-J., & Fiedler, F. (1995). Comparison of the DRAIS and EURAD model simulations of air pollution in a mesoscale area. Meteorology and Atmospheric Physics, 57, 135–158.

    Article  Google Scholar 

  • Riemer, N., Vogel, H., Vogel, B., & Fiedler, F. (2003). Modelling aerosols on the mesoscale-g: Treatment of soot aerosol and its radiative effects. Journal of Geophysics Research, 109, 4601. doi:10.1029/2003JD003448.

    Article  Google Scholar 

  • Schädler, G. (1989). Numerische Simulationen zur Wechselwirkung zwischen Landoberflächen und atmosphärischer Grenzschicht. Germany: Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung der Universität Karlsruhe (TH).

    Google Scholar 

  • Spiegel, W., Maier, H., & Maier, M. (2004). A non-infectious airborne disease. Lancet, 363, 1438.

    Article  Google Scholar 

  • Scheidter, F. (1934). Forstentomologische Beiträge. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 44, 223–226, 362–379, 385–423, 497–525.

  • Tangermann-Dlugi, G., & Fiedler, F. (1983). Numerische Simulation turbulenter Ausbreitungsvorgänge in der atmosphärischen Grenzschicht. Wasserwirtschaft, 73, 411–415.

    CAS  Google Scholar 

  • Vogel, B., Fiedler, F., & Vogel, H. (1995). Influence of topography and biogenic volatile organic compounds emission in the state of Baden-Württemberg on ozone concentrations during episodes of high air temperatures. Journal of Geophysical Research, 100, 22907–22928.

    Article  CAS  Google Scholar 

  • Vogel, B., Riemer, N., Vogel, H. & Fiedler, F. (1999). Findings on NOy as an indicator for ozone sensitivity based on different numerical simulations. Journal of Geophysical Research, 3605–3620.

  • Weidner, H. (1937). Beiträge zu einer Monographie der Raupen mit Gifthaaren. Zeitschrift für angewandte Entomologie, 23, 432–484.

    Article  Google Scholar 

  • Werno, J., & Lamy, M. (1990). Pollution atmosphèrique d’origine animal: les poils urticants de la chenille processionnaire du pin (Thaumetopoea pityocampa Schiff.). Comptes Rendus de l’Académie des Sciences, Paris, Série III, 310, 325–331.

    CAS  Google Scholar 

  • Werno, J., Lamy, M, & Vincendeau P. (1993). Caterpillar hairs as allergens. Lancet, 342, 936–937

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Fenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenk, L., Vogel, B. & Horvath, H. Dispersion of the bio-aerosol produced by the oak processionary moth. Aerobiologia 23, 79–87 (2007). https://doi.org/10.1007/s10453-007-9053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-007-9053-3

Keywords

Navigation