Skip to main content
Log in

Sustained Growth Factor Delivery in Tissue Engineering Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The beautifully orchestrated complexity of the temporal spatial growth factor gradients during embryogenesis offer a striking contrast to systemic bolus administration that lack tissue specificity and sustained protein localization, often requiring supraphysiological protein doses to produce the desired therapeutic dose. These attributes may be responsible for clinically observed dangerous tissue overgrowth, inflammation, and even tumor formation. Growth factor delivery within an implanted scaffold is a very attractive way to modulate cell behavior. For short term delivery, proteins can be non-specifically adsorbed to the material surface or simply entrapped within the bulk scaffold. For more sustained delivery, many researchers have turned to the ever increasing list of covalent immobilization methods that have profound applications in purification, biosensing, imaging, and drug discovery by tethering proteins, nucleic acids, carbohydrates, synthetic polymers, small molecules, nanotubes, and even whole cells. This review focuses on the use of covalent immobilization to achieve sustained growth factor delivery for tissue engineering. Covalent immobilization techniques will be reviewed in terms of design, protein bioactivity/stability, efficiency, and spatiotemporal distribution. Further, the biological response to sustained growth factor delivery will also be covered, such as cell interaction, cell responsiveness, proliferation, differentiation, extracellular matrix production, and tissue regeneration. This focused review is anticipated to inform investigators on the selection of optimal immobilization strategies for their specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsberg, E., D. J. Mooney, et al. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res. 80(11):2025–2029, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, S. M., T. Segura, et al. The phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) by engineered surfaces with electrostatically or covalently immobilized VEGF. Biomaterials 30:4618–4628, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bhakta, G., B. Rai, S. M. Cool, et al. Hyaluronic acid-based hydrogels functionalized with heparin that support controlled release of bioactive BMP-2. Biomaterials 33:6113–6122, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bieniarz, C., M. Husain, et al. Extended length heterobifunctional coupling agents for protein conjugations. Bioconjugate Chem. 7:88–95, 1996.

    Article  CAS  Google Scholar 

  5. Binder, W. H., and R. Sachsenhofer. ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. 28:15–54, 2007.

    Article  CAS  Google Scholar 

  6. Biondi, M., A. Netti, et al. Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 60:229–242, 2008.

    Article  CAS  PubMed  Google Scholar 

  7. Breinan, H. A., T. Minas, M. Spector, et al. Histological evaluation of the course of healing of canine articular cartilage defects treated with cultured autologous chondrocytes. Tissue Eng. 4(1):101–113, 1998.

    Article  Google Scholar 

  8. Budiraharjo, R., K. G. Neoh, and E. Kang. Enhancing bioactivity of chitosan film for osteogenesis and wound healing by covalent immobilization of BMP-2 or FGF-2. J. Biomater. Sci. Polym. Ed. 24(6):645–662, 2013.

    Article  CAS  PubMed  Google Scholar 

  9. Carlsson, J., H. Lundqvist, et al. Conjugate chemistry and cellular processing of EGF-dextran. Acta Oncol. 38(3):313–321, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, G., and Y. Ito. Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation. Biomaterials 22:2453–2457, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, F. M., Z. F. Wu, et al. Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31:6279–6308, 2010.

    Article  CAS  PubMed  Google Scholar 

  12. Chevalier, J., J. Yi, et al. Biotin and digoxigenin as labels for light and electron microscopy in situ hybridization probes: where do we stand? J. Histochem. Cytochem. 45:481, 1997.

    Article  CAS  PubMed  Google Scholar 

  13. DeLong, S. A., A. S. Gobin, and J. L. West. Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J. Controlled Release 109:139–148, 2005.

    Article  CAS  Google Scholar 

  14. DeLong, S. A., J. J. Moon, and J. L. West. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26:3227–3234, 2005.

    Article  CAS  PubMed  Google Scholar 

  15. Duan, B., and M. Wang. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. R. Soc. Interface 7:S615–S629, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Elia, R., R. A. Peattie, et al. Stimulation of in vivo angiogenesis by an in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials 31:4630–4638, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gurdon, J. B., and P. Y. Bourillot. Moprhogen gradient interpretation. Nature 413:797–803, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Gurdon, J. B., H. Standley, et al. Single cells can sense their position in a morphogen gradient. Development 126:5309–5317, 1999.

    CAS  PubMed  Google Scholar 

  19. Harris, B. P., A. T. Metters, et al. Photopatterned polymer brushes promoting cell adhesion gradients. Langmuir 22(10):4467–4471, 2006.

    Article  CAS  PubMed  Google Scholar 

  20. Ho, Y., F. Mi, H. Sung, and P. Kuo. Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. Intl. J. Pharm. 376:69–75, 2009.

    Article  CAS  Google Scholar 

  21. Hubbard, T. J., and C. A. Hicks-Little. Ankle ligament healing after an acute ankle sprain: an evidence-based approach. J. Athletic Training 43(5):523–529, 2008.

    Article  Google Scholar 

  22. Israelachvili, J. Intermolecular and Surface Forces (2nd ed.). London: Academic Press, 1992.

    Google Scholar 

  23. Jabbari, E. Bioconjugation of hydrogels for tissue engineering. Curr. Opin. Biotechnol. 22:655–660, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Jeon, O., B. S. Kim, et al. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials 28(17):2763–2771, 2007.

    Article  CAS  PubMed  Google Scholar 

  25. Jiskoot, W., T. W. Randolph, et al. Protein instability and immogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release. J. Pharm. Sci. 101(3):946–954, 2012.

    Article  CAS  PubMed  Google Scholar 

  26. Kapur, T. A., and M. S. Shoichet. Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J. Biomed. Mater. Res. 68A:235–243, 2004.

    Article  CAS  Google Scholar 

  27. Karageorgiou, V., D. Kaplan, et al. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res. A 71A:528–537, 2004.

    Article  CAS  Google Scholar 

  28. Lam, H. J., S. Li, et al. In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers. Tissue Eng. Part A 16(8):2641–2648, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Langer, R., and M. Moses. Biocompatible controlled release polymers for delivery of polypeptides and growth factors. J. Cell. Biochem. 45:340–345, 1991.

    Article  CAS  PubMed  Google Scholar 

  30. Lee, J., J. J. Yoo, A. Atala, and S. J. Lee. The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration. Biomaterials 33:6709–6720, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Leipzig, N. D., M. S. Shoichet, et al. Functional immobilization of interferon-gamma induces neuronal differentiation of neural stem cells. J. Biomed. Mater. Res. 93A:625–633, 2010.

    CAS  Google Scholar 

  32. Leipzig, N. C., M. S. Shoichet, et al. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32:57–64, 2011.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, H. W., G. H. Hsiue, et al. Heterobifunctional poly(ethylene glycol)-tethered bone morphogenetic protein-2-stimulated bone marrow mesenchymal stromal cell differentiation and osteogenesis. Tissue Eng. 13(5):1113–1124, 2007.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, L. S., R. C. Spiro, et al. Hyaluronate-heparin conjugate gels for the delivery of basic fibroblast growth factor (FGF-2). J. Biomed. Mater. Res. 62:128–135, 2002.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, H., and T. J. Webster. Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites. J. Biomed. Mater. Res. 93A:1180–1192, 2010.

    CAS  Google Scholar 

  36. Lock, J., T. Y. Nguyen, and H. Liu. Nanophase hydroxyapatite and poly(lactide-co-glycolide) composites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro. J. Mater. Sci. Mater. Med. 23:2543–2552, 2012.

    Article  CAS  PubMed  Google Scholar 

  37. Lutz, J., and H. G. Borner. Modern trends in polymer bioconjugates design. Prog. Polym. Sci. 33:1–39, 2008.

    Article  CAS  Google Scholar 

  38. Mann, B. K., R. H. Schmedlen, and J. L. West. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22:439–444, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. Marcantonio, N. A., L. G. Griffith, et al. The influence of tethered epidermal growth factor on connective tissue progenitor colony formation. Biomaterials 30:4629–4638, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Marden, L. J., and J. O. Hollinger. Platelet-derived growth factor inhibits bone regeneration induced by osteogenin, a bone morphogenetic protein, in rat craniotomy defects. J. Clin. Invest. 92:2897–2905, 1993.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Metzger, W., M. Oberringer, et al. Induction of myofibroblastic differentiation in vitro by covalently immobilized transforming growth factor-B1. Tissue Eng. 13(11):2751–2760, 2007.

    Article  CAS  PubMed  Google Scholar 

  42. Molineux, G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat. Rev. 28(Supplement 1):13–16, 2002.

    Article  CAS  PubMed  Google Scholar 

  43. Moon, J. J., S. H. Lee, and J. L. West. Synthetic biomimetic hydrogels incorporated with ephrin-A1 for therapeutic angiogenesis. Biomacromolecules 8:42–49, 2007.

    Article  CAS  PubMed  Google Scholar 

  44. Moore, K., M. S. Shoichet, et al. Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng. 12:267–278, 2006.

    Article  CAS  PubMed  Google Scholar 

  45. Nillesen, S. T., T. H. van Kuppevelt, et al. Increased angiogenesis and blood vessel maturation in acellular collagen heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28:1123–1131, 2007.

    Article  CAS  PubMed  Google Scholar 

  46. Park, J. S., K. H. Park, et al. Determination of dual delivery for stem cell differentiation using dexamethasone and TGF-beta3 in/on polymeric microspheres. Biomaterials 30:4796–4805, 2009.

    Article  CAS  PubMed  Google Scholar 

  47. Patel, S., S. Li, et al. Regulation of endothelial cell function by GRDGSP peptide grafted onto interpenetrating polymers. J. Biomed. Mater. Res. 83A:423–433, 2007.

    Article  CAS  Google Scholar 

  48. Patel, S., S. Li, et al. Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett. 7(7):2122–2128, 2007.

    Article  CAS  PubMed  Google Scholar 

  49. Patel, N., K. M. Shakesheff, et al. Spatially controlled cell engineering on biodegradable polymer surfaces. FASEB J. 12:1447–1454, 1998.

    CAS  PubMed  Google Scholar 

  50. Phelps, E. A., A. J. Garcia, et al. Bioartificial matrices for therapeutic vascularization. PNAS 107(8):3323–3328, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Pompe, T., C. Werner, et al. Immobilization of growth factors on solid support for the modulation of stem cell fate. Nat. Protoc. 5(6):1042–1050, 2010.

    Article  CAS  PubMed  Google Scholar 

  52. Puccinelli, T. J., P. J. Bertics, and K. S. Masters. Regulation of keratinocyte signaling and function via changes in epidermal growth factor presentation. Acta Biomater. 6(9):3415–3425, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Quaglia, F. Bioinspired tissue engineering: the great promise of protein delivery technologies. Intl. J. Pharm. 364:281–297, 2008.

    Article  CAS  Google Scholar 

  54. Raiche, A. T., and D. A. Puleo. In vitro effects of combined and sequential delivery of two bone growth factors. Biomaterials 25:677–685, 2004.

    Article  CAS  PubMed  Google Scholar 

  55. Richardson, T. P., D. J. Mooney, et al. Polymeric system for dual growth factory delivery. Nat. Biotechnol. 19:1029–1034, 2001.

    Article  CAS  PubMed  Google Scholar 

  56. Ripamonti, U., D. C. Rueger, et al. Periodontal tissue regeneration by combined applications of recombinant human osteogenic protein-1 and bone morphogenetic protein-2. A pilot study in Chacma baboons (Papio ursinus). Eur. J. Oral Sci. 109:241–248, 2001.

    Article  CAS  PubMed  Google Scholar 

  57. Rohman, G., N. R. Cameron, et al. Heparin functionalization of porous PLGA scaffolds for controlled, biologically relevant delivery of growth factors for soft tissue engineering. J. Mater. Chem. 12:9265–9273, 2009.

    Article  Google Scholar 

  58. Rowley, J. A., and D. J. Mooney. Alginate type and RGD density control myoblast phenotype. J. Biomed. Mater. Res. 60:217–223, 2002.

    Article  CAS  PubMed  Google Scholar 

  59. Schaffer, D. V., and D. A. Lauffenburger. Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery. J. Biol. Chem. 273:28004–28009, 1998.

    Article  CAS  PubMed  Google Scholar 

  60. Sheardown, H., C. Wedge, et al. Continuous epidermal growth factor delivery in corneal epithelial wound healing. Invest. Ophthalmol. Vis. Sci. 34(13):3593–3600, 1993.

    CAS  PubMed  Google Scholar 

  61. Stroncek, J. D., and W. M. Reichert. Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment. Boca Raton: CRC Press, 2008, Chap. 1.

  62. Takita, H., E. Tsuruga, et al. Enhancement by bFGF of osteogenesis induced by rhBMP-2 in rats. Eur. J. Oral Sci. 105:588–592, 1997.

    Article  CAS  PubMed  Google Scholar 

  63. Tan, H., C. Gao, et al. Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. J. Mater. Sci. Mater. Med. 18:1961–1968, 2007.

    Article  CAS  PubMed  Google Scholar 

  64. Tayalia, P., and D. J. Mooney. Controlled growth factory delivery for tissue engineering. Adv. Mater. 21:3269–3285, 2009.

    Article  CAS  PubMed  Google Scholar 

  65. Teixeira, S., L. Yang, F. J. Monteiro, et al. Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering. J. Mater. Sci. Mater. Med. 21:2385–2392, 2010.

    Article  CAS  PubMed  Google Scholar 

  66. Tigli, R. S., and M. Gumusderelioglu. Evaluation of RGD- or EGF-immobilized chitosan scaffolds for chondrogenic activity. Intl. J. Biol. Macromol. 43:121–128, 2008.

    Article  CAS  Google Scholar 

  67. Van Den Beucken, J. J. J. P., J. A. Jansen, et al. In vitro and in vivo effects of deoxyribonucleic acid-based coatings functionalized with vascular endothelial growth factor. Tissue Eng. 13(4):711–720, 2007.

    Article  PubMed  Google Scholar 

  68. Vonau, R. L., and A. E. Sams, et al. Combination of growth factors inhibits bone ingrowth in the bone harvest chamber. Clin. Orthop. 386:243–251, 2001.

    Google Scholar 

  69. Wissink, M. J. B., J. Feijen, et al. Binding and release of basic fibroblast growth factor from heparinized collagen matrices. Biomaterials 22(16):2291–2299, 2001.

    Article  CAS  PubMed  Google Scholar 

  70. Yoon, J. J., T. G. Park, et al. Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. J. Biomed. Mater. Res. Part A 79A(4):934–942, 2006.

    Article  CAS  Google Scholar 

  71. Yoon, J. J., T. G. Park, et al. Photo-crosslinkable and biodegradable Pluronic/heparin hydrogels for local delivery of angiogenic growth factor. J. Biomed. Mater. Res. A 83A(3):597–605, 2007.

    Article  CAS  Google Scholar 

  72. Young, S., L. S. Baggett, et al. Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model. Tissue Eng. Part A 15:2347–2362, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Yu, J., S. Li, et al. The effect of stromal cell-derived factor-1α/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration. Biomaterials 33:8062–8074, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Zhang, H., S. J. Hollister, et al. Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone (PCL) scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng.: Part A 16(11):3441–3448, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Wu.

Additional information

Associate Editor Tzung Hsiai oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, S., Wu, B. Sustained Growth Factor Delivery in Tissue Engineering Applications. Ann Biomed Eng 42, 1528–1536 (2014). https://doi.org/10.1007/s10439-013-0956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0956-6

Keywords

Navigation