Skip to main content
Log in

The Effect of Intermittent Static Biaxial Tensile Strains on Tissue Engineered Cartilage

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical stimulation of engineered cartilage constructs is a commonly applied method used to accelerate tissue formation and improve the mechanical properties of the developed tissue. While the effects of compression and shear have been widely studied, the effect of tension has received relatively little attention. As articular cartilage in vivo is subjected to a degree of static tension (pre-tension) even in the absence of externally applied loads, the purpose of this study was to investigate the effect of intermittent static biaxial tensile strains (BTS) on chondrocyte metabolism and resultant tissue formation. Using a custom-design loading fixture to apply BTS, the optimal conditions for stimulating extracellular matrix synthesis were under average magnitudes of 3.8% radial and 2.1% circumferential tensile strains for 30 min. Tissue constructs subjected to tensile strain stimulation 3 times/week for a period of 4 weeks displayed increased thickness (35 ± 18%) and proteoglycan content (22 ± 7%) without an associated change in mechanical properties. In contrast, constructs stimulated daily over the same time period exhibited negligible effects in terms of ECM accumulation suggesting that the frequency of stimulation needs to be precisely controlled. The results of this study demonstrate that while tension can be used as potential biomechanical stimulus to improve tissue formation, further optimization of this process needs to be conducted to improve ECM accumulation and tissue mechanical properties after long-term exposure to tensile stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bonassar, L. J., A. J. Grodzinsky, E. H. Frank, S. G. Davila, N. R. Bhaktav, and S. B. Trippel. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J. Orthop. Res. 19:11–17, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Bostrom, H., and B. Mansson. On the enzymatic exchange of the sulfate group of chondroitinsulfuric acid in slices of cartilage. J. Biol. Chem. 196:483–488, 1952.

    CAS  PubMed  Google Scholar 

  3. Boyle, J., B. Luan, T. F. Cruz, and R. A. Kandel. Characterization of proteoglycan accumulation during formation of cartilagenous tissue in vitro. Osteoarthr. Cartil. 3:117–125, 1995.

    Article  CAS  PubMed  Google Scholar 

  4. Buckwalter, J. A., T. A. Einhorn, and S. R. Simon. Orthopaedic basic science: biology and biomechanics of the musculoskeletal system. Am. Acad. Orthop. Surg. 2000.

  5. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108(Pt 4):1497–1508, 1995.

    CAS  PubMed  Google Scholar 

  6. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, J. H. Kimura, and E. B. Hunziker. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10:745–758, 1992.

    Article  CAS  PubMed  Google Scholar 

  7. Chevrier, A., E. Rossomacha, M. D. Buschmann, and C. D. Hoemann. Optimization of histoprocessing methods to detect glycosaminoglycan, collagen type II, and collagen type I in decalcified rabbit osteochondral sections. J. Histotechnol. 28:165–175, 2005.

    CAS  Google Scholar 

  8. Connelly, J. T., E. J. Vanderploeg, and M. E. Levenston. The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses. Biorheology 41:377–387, 2004.

    CAS  PubMed  Google Scholar 

  9. De Croos, J. N., S. S. Dhaliwal, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol. 25:323–331, 2006.

    Article  PubMed  Google Scholar 

  10. Farndale, R. W., D. J. Buttle, and A. J. Barrett. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883:173–177, 1986.

    CAS  PubMed  Google Scholar 

  11. Fry, H. J. The interlocked stresses of articular cartilage. Br. J. Plast. Surg. 27:363–364, 1974.

    Article  CAS  PubMed  Google Scholar 

  12. GEHR Plastics, I. Technical data sheet: acrylnitrile butadiene styrene copolymer, 2008.

  13. Gibson, T., and W. B. Davis. The distortion of autogenous cartilage grafts: its cause and prevention. Br. J. Plast. Surg. 10:257–274, 1958.

    Article  Google Scholar 

  14. Goldberg, R. L., and L. M. Kolibas. An improved method for determining proteoglycans synthesized by chondrocytes in culture. Connect. Tissue Res. 24:265–275, 1990.

    Article  CAS  PubMed  Google Scholar 

  15. Goodfellow. Polytetrafluoroethylene (PTFE) material information, 2008.

  16. Goodfellow. Technical information—polyacrylonitrile-butadiene-styrene, 2008.

  17. Hayes, W. C., L. M. Keer, G. Herrmann, and L. F. Mockros. A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5:541–551, 1972.

    Article  CAS  PubMed  Google Scholar 

  18. Heinegard, D., M. Bayliss, and P. Lorenzo. Biochemistry and metabolism of normal and osteoarthritic cartilage. In: Osteoarthritis, edited by K. D. Brandt, M. Doherty, and L. S. Lohmander. New York: Oxford University Press, 1998, pp. 74–84.

    Google Scholar 

  19. Hirano, Y., N. Ishiguro, M. Sokabe, M. Takigawa, and K. Naruse. Effects of tensile and compressive strains on response of a chondrocytic cell line embedded in type I collagen gel. J. Biotechnol. 133:245–252, 2008.

    Article  CAS  PubMed  Google Scholar 

  20. Hoch, D. H., A. J. Grodzinsky, T. J. Koob, M. L. Albert, and D. R. Eyre. Early changes in material properties of rabbit articular cartilage after meniscectomy. J. Orthop. Res. 1:4–12, 1983.

    Article  CAS  PubMed  Google Scholar 

  21. Honda, K., S. Ohno, K. Tanimoto, C. Ijuin, N. Tanaka, T. Doi, Y. Kato, and K. Tanne. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur. J. Cell Biol. 79:601–609, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, J., L. R. Ballou, and K. A. Hasty. Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene 404:101–109, 2007.

    Article  CAS  PubMed  Google Scholar 

  23. Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10:432–463, 2002.

    Article  CAS  PubMed  Google Scholar 

  24. Ikenoue, T., M. C. Trindade, M. S. Lee, E. Y. Lin, D. J. Schurman, S. B. Goodman, and R. L. Smith. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J. Orthop. Res. 21:110–116, 2003.

    Article  CAS  PubMed  Google Scholar 

  25. Jin, M., E. H. Frank, T. M. Quinn, E. B. Hunziker, and A. J. Grodzinsky. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch. Biochem. Biophys. 395:41–48, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Kaupp, J. A., and S. D. Waldman. Mechanical vibrations increase the proliferation of articular chondrocytes in high-density culture. Proc. Inst. Mech. Eng. [H] 222:695–703, 2008.

    CAS  Google Scholar 

  27. Khan, A. A., J. M. Suits, R. A. Kandel, and S. D. Waldman. The effect of continuous culture on the growth and structure of tissue-engineered cartilage. Biotechnol. Prog. 25:508–515, 2009.

    Article  CAS  PubMed  Google Scholar 

  28. Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174:168–176, 1988.

    Article  CAS  PubMed  Google Scholar 

  29. Kisiday, J. D., M. Jin, M. A. DiMicco, B. Kurz, and A. J. Grodzinsky. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J. Biomech. 37:595–604, 2004.

    Article  PubMed  Google Scholar 

  30. Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113:245–258, 1991.

    Article  CAS  PubMed  Google Scholar 

  31. Leblond, C. P., B. Messier, and B. Kopriwa. Thymidine-H3 as a tool for the investigation of the renewal of cell populations. Lab. Invest. 8:296–306, 1959; discussion 306–308.

    CAS  PubMed  Google Scholar 

  32. Lee, D. A., T. Noguchi, S. P. Frean, P. Lees, and D. L. Bader. The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs. Biorheology 37:149–161, 2000.

    CAS  PubMed  Google Scholar 

  33. Maroudas, A., and M. Venn. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann. Rheum. Dis. 36:399–406, 1977.

    Article  CAS  PubMed  Google Scholar 

  34. Martin, I., B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37:141–147, 2000.

    CAS  PubMed  Google Scholar 

  35. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Millipore Corporation. Millicell® Culture Plate Inserts 1–6, 2004.

  37. Narmoneva, D. A., J. Y. Wang, and L. A. Setton. Nonuniform swelling-induced residual strains in articular cartilage. J. Biomech. 32:401–408, 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Newman, A. P. Articular cartilage repair. Am. J. Sports Med. 26:309–324, 1998.

    CAS  PubMed  Google Scholar 

  39. Parker-TexLoc. PTFE detailed properties (polytetrafluoroethylene), 2008.

  40. Peterkofsky, B., and R. Diegelmann. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry 10:988–994, 1971.

    Article  CAS  PubMed  Google Scholar 

  41. Quinn, T. M., A. J. Grodzinsky, M. D. Buschmann, Y. J. Kim, and E. B. Hunziker. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J. Cell Sci. 111(Pt 5):573–583, 1998.

    CAS  PubMed  Google Scholar 

  42. Ramakrishnan, N., and V. S. Arunachalam. Effective elastic moduli of porous solids. J. Mater. Sci. Mater. Med. 25:3930–3937, 1990.

    Google Scholar 

  43. Saxon, L. K., A. G. Robling, I. Alam, and C. H. Turner. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 36:454–464, 2005.

    Article  CAS  PubMed  Google Scholar 

  44. Schriefer, J. L., S. J. Warden, L. K. Saxon, A. G. Robling, and C. H. Turner. Cellular accommodation and the response of bone to mechanical loading. J. Biomech. 38:1838–1845, 2005.

    Article  PubMed  Google Scholar 

  45. Stratasys Inc. ABS, 2007.

  46. Tare, R. S., D. Howard, J. C. Pound, H. I. Roach, and R. O. Oreffo. Tissue engineering strategies for cartilage generation—micromass and three dimensional cultures using human chondrocytes and a continuous cell line. Biochem. Biophys. Res. Commun. 333:609–621, 2005.

    Article  CAS  PubMed  Google Scholar 

  47. Turner, C. H. Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407, 1998.

    Article  CAS  PubMed  Google Scholar 

  48. Vanderploeg, E. J., S. M. Imler, K. R. Brodkin, A. J. Garcia, and M. E. Levenston. Oscillatory tension differentially modulates matrix metabolism and cytoskeletal organization in chondrocytes and fibrochondrocytes. J. Biomech. 37:1941–1952, 2004.

    Article  PubMed  Google Scholar 

  49. Vanderploeg, E. J., C. G. Wilson, and M. E. Levenston. Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading. Osteoarthr. Cartil. 16:1228–1236, 2008.

    Article  CAS  PubMed  Google Scholar 

  50. Vunjak-Novakovic, G., I. Martin, B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer, and L. E. Freed. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17:130–138, 1999.

    Article  CAS  PubMed  Google Scholar 

  51. Waldman, S. D., D. C. Couto, S. J. Omelon, and R. A. Kandel. Effect of sodium bicarbonate on extracellular pH, matrix accumulation, and morphology of cultured articular chondrocytes. Tissue Eng. 10:1633–1640, 2004.

    Article  CAS  PubMed  Google Scholar 

  52. Waldman, S. D., M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro. J. Biomed. Mater. Res. 62:323–330, 2002.

    Article  CAS  PubMed  Google Scholar 

  53. Waldman, S. D., C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, J. Hong, and R. A. Kandel. Effect of biomechanical conditioning on cartilaginous tissue formation in vitro. J. Bone Joint Surg. Am. 85-A(Suppl 2):101–105, 2003.

    PubMed  Google Scholar 

  54. Waldman, S. D., C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng. 10:1323–1331, 2004.

    CAS  PubMed  Google Scholar 

  55. Waldman, S. D., C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J. Orthop. Res. 21:590–596, 2003.

    Article  CAS  PubMed  Google Scholar 

  56. Wilkins, R. J., and A. C. Hall. Control of matrix synthesis in isolated bovine chondrocytes by extracellular and intracellular pH. J. Cell. Physiol. 164:474–481, 1995.

    Article  CAS  PubMed  Google Scholar 

  57. Woessner, Jr., J. F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93:440–447, 1961.

    Article  CAS  PubMed  Google Scholar 

  58. Wong, M., M. Siegrist, and K. Goodwin. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 33:685–693, 2003.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, Z., J. M. McCaffery, R. G. Spencer, and C. A. Francomano. Hyaline cartilage engineered by chondrocytes in pellet culture: histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants. J. Anat. 205:229–237, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada. The authors would like to thank Mr. John DaCosta (Department of Pathology and Laboratory Medicine) and Ms. Aasma Khan (Department of Chemical Engineering) for their technical assistance in the histological and immunohistochemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Waldman.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J.C.Y., Waldman, S.D. The Effect of Intermittent Static Biaxial Tensile Strains on Tissue Engineered Cartilage. Ann Biomed Eng 38, 1672–1682 (2010). https://doi.org/10.1007/s10439-010-9917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9917-5

Keywords

Navigation