Skip to main content
Log in

Experimental Friction Coefficients for Bovine Cartilage Measured with a Pin-on-Disk Tribometer: Testing Configuration and Lubricant Effects

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The friction coefficient between wet articular cartilage surfaces was measured using a pin-on-disk tribometer adopting different testing configurations: cartilage-on-pin vs. alumina-on-disk (CA); cartilage-on-pin vs. cartilage-on-disk (CC); and alumina-on-pin vs. cartilage-on-disk (AC). Several substances were dissolved in the phosphate buffered saline (PBS) solution to act as lubricants: 10,000 molecular weight (MW) polyethylene glycol (PEG), 100,000 MW PEG, and chondroitin sulfate (CS), all at 100 mg/mL concentration. Scanning electron microscopy photographs of the cartilage specimens revealed limited wear due to the experiment. Conducting the experiments in PBS solutions we provide evidence according to which a commercial pin-on-disk tribometer allows us to assess different lubrication mechanisms active in cartilage. Specifically, we find that the measured friction coefficient strongly depends on the testing configuration. Our results show that the friction coefficient measured under CC and AC testing configurations remains very low as the sliding distance increases, probably because during the pin displacement the pores present in the cartilage replenish with PBS solution. Under such conditions the fluid phase supports a large load fraction for long times. By systematically altering the composition of the PBS solution we demonstrate the importance of solution viscosity in determining the measured friction coefficient. Although the friction coefficient remains low under the AC testing configuration in PBS, 100 mg/mL solutions of both CS and 100,000 MW PEG in PBS further reduce the friction coefficient by ~40%. Relating the measured friction coefficient to the Hersey number, our results are consistent with a Stribeck curve, confirming that the friction coefficient of cartilage under the AC testing configuration depends on a combination of hydrodynamic, boundary, and weep bearing lubrication mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ateshian, G. A. A theoretical formulation for boundary friction in articular cartilage. J. Biomech. Eng. Trans. ASME 119(1):81–86, 1997.

    Article  CAS  Google Scholar 

  2. Ateshian, G. A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42(9):1163–1176, 2009.

    Article  PubMed  Google Scholar 

  3. Ateshian, G. A., W. M. Lai, W. B. Zhu, and V. C. Mow. An asymptotic solution for the contact of 2 biphasic cartilage layers. J. Biomech. 27(11):1347–1360, 1994.

    Article  CAS  PubMed  Google Scholar 

  4. Ateshian, G. A., and H. Wang. Rolling resistance of articular cartilage due to interstitial fluid flow. Proc. Inst. Mech. Eng. H 211(5):419–424, 1997.

    Article  CAS  PubMed  Google Scholar 

  5. Ateshian, G. A., W. H. Warden, J. J. Kim, R. P. Grelsamer, and V. C. Mow. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30(11–12):1157–1164, 1997.

    Article  CAS  PubMed  Google Scholar 

  6. Basalo, I. M., N. O. Chahine, M. Kaplun, F. H. Chen, C. T. Hung, and G. A. Ateshian. Chondroitin sulfate reduces the friction coefficient of articular cartilage. J. Biomech. 40(8):1847–1854, 2007.

    Article  PubMed  Google Scholar 

  7. Bell, C. J., E. Ingham, and J. Fisher. Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proc. Inst. Mech. Eng. H 220(H1):23–31, 2006.

    CAS  PubMed  Google Scholar 

  8. Benz, M., N. H. Chen, G. Jay, and J. I. Israelachvili. Static forces, structure and flow properties of complex fluids in highly confined geometries. Ann. Biomed. Eng. 33(1):39–51, 2005.

    Article  PubMed  Google Scholar 

  9. Bian, L. M., M. Kaplun, D. Y. Williams, D. Xu, G. A. Ateshian, and C. T. Hung. Influence of chondroitin sulfate on the biochemical, mechanical and frictional properties of cartilage explants in long-term culture. J. Biomech. 42(3):286–290, 2009.

    Article  PubMed  Google Scholar 

  10. Brizmer, V., Y. Kligerman, and I. Etsion. Elastic-plastic spherical contact under combined normal and tangential loading in full stick. Tribol. Lett. 25(1):61–70, 2007.

    Article  Google Scholar 

  11. Buckwalter, J. A. Osteoarthritis and articular-cartilage use, disuse, and abuse-experimental studies. J. Rheumatol. Suppl. 43S:13–15, 1995.

    Google Scholar 

  12. Caligaris, M., and G. A. Ateshian. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthritis Cartilage 16(10):1220–1227, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Chan, S. M. T., C. P. Neu, G. DuRaine, K. Komvopoulos, and A. H. Reddi. Atomic force microscope investigation of the boundary-lubricant layer in articular cartilage. Osteoarthritis Cartilage 18(7):956–963, 2010.

    Article  CAS  PubMed  Google Scholar 

  14. Charnley, J. The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Ann. Rheum. Dis. 19(1):10–19, 1960.

    Article  CAS  PubMed  Google Scholar 

  15. Dean, D., L. Han, C. Ortiz, and A. J. Grodzinsky. Nanoscale conformation and compressibility of cartilage aggrecan using microcontact printing and atomic force microscopy. Macromolecules 38(10):4047–4049, 2005.

    Article  CAS  Google Scholar 

  16. Dowson, D. Elastohydrodynamic and micro-elastohydrodynamic lubrication. Wear 190(2):125–138, 1995.

    Article  CAS  Google Scholar 

  17. Dowson, D. New joints for the Millennium: wear control in total replacement hip joints. Proc. Inst. Mech. Eng. H 215(H4):335–358, 2001.

    CAS  PubMed  Google Scholar 

  18. DuRaine, G., C. P. Neu, S. M. Chan, K. Komvopoulos, R. K. June, and A. H. Reddi. Regulation of the friction coefficient of articular cartilage by TGF-β1 and IL-1β. J. Orthop. Res. 27(2):249–256, 2009.

    Article  PubMed  Google Scholar 

  19. Forsey, R. W., J. Fisher, J. Thompson, M. H. Stone, C. Bell, and E. Ingham. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials 27(26):4581–4590, 2006.

    Article  CAS  PubMed  Google Scholar 

  20. Forster, H., and J. Fisher. The influence of loading time and lubricant on the friction of articular cartilage. Proc. Inst. Mech. Eng. H 210(2):109–119, 1996.

    CAS  PubMed  Google Scholar 

  21. Forster, H., and J. Fisher. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc. Inst. Mech. Eng. H 213(4):329–345, 1999.

    Article  CAS  PubMed  Google Scholar 

  22. Gleghorn, J. P., and L. J. Bonassar. Lubrication mode analysis of articular cartilage using Stribeck surfaces. J. Biomech. 41(9):1910–1918, 2008.

    Article  PubMed  Google Scholar 

  23. Graindorge, S. L., and G. W. Stachowiak. Changes occurring in the surface morphology of articular cartilage during wear. Wear 241(2):143–150, 2000.

    Article  CAS  Google Scholar 

  24. Green, G. Understanding NSAIDs: from aspirin to COX-2. Clin. Cornerstone 3(5):50–60, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Helmick, C. G., D. T. Felson, R. C. Lawrence, S. Gabriel, R. Hirsch, C. K. Kwoh, M. H. Liang, H. M. Kremers, M. D. Mayes, and P. A. Merkel. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part I. Arthritis Rheumat. 58(1):15–25, 2008.

    Article  PubMed  Google Scholar 

  26. Hersey, M. D. Laws of lubrication. J. Washington Acad. Sci. 4:542–552, 1914.

    Google Scholar 

  27. Higginso, G. R., and R. Norman. Model investigation of squeeze-film lubrication in animal joints. Phys. Med. Biol. 19(6):785–792, 1974.

    Article  Google Scholar 

  28. Hlavacek, M. The role of synovial-fluid filtration by cartilage in lubrication of synovial joints. 1. Mixture model of synovial-fluid. J. Biomech. 26(10):1145–1150, 1993.

    Article  CAS  PubMed  Google Scholar 

  29. Hlavacek, M. The role of synovial-fluid filtration by cartilage in lubrication of synovial joints. 2. Squeeze-film lubrication-homogeneous filtration. J. Biomech. 26(10):1151–1160, 1993.

    Article  CAS  PubMed  Google Scholar 

  30. Hlavacek, M. The role of synovial-fluid filtration by cartilage in lubrication of synovial joints. 4. Squeeze-film lubrication—the central film thickness for normal and inflammatory synovial-fluid for axial symmetry under high loading conditions. J. Biomech. 28(10):1199–1205, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Hlavacek, M. Squeeze-film lubrication of the human ankle joint with synovial fluid filtrated by articular cartilage with the superficial zone worn out. J. Biomech. 33(11):1415–1422, 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Hlavacek, M. The thixotropic effect of the synovial fluid in squeeze-film lubrication of the human hip joint. Biorheology 38(4):319–334, 2001.

    CAS  PubMed  Google Scholar 

  33. Hlavacek, M. Squeeze-film lubrication of the human ankle joint subjected to the cyclic loading encountered in walking. J. Tribol. Trans. ASME 127(1):141–148, 2005.

    Article  Google Scholar 

  34. Hlavacek, M., and J. Novak. The role of synovial-fluid filtration by cartilage in lubrication of synovial joints. 3. Squeeze-film lubrication-axial symmetry under low loading conditions. J. Biomech. 28(10):1193–1198, 1995.

    Article  CAS  PubMed  Google Scholar 

  35. Jay, G. D., U. Tantravahi, D. E. Britt, H. J. Barrach, and C. J. Cha. Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J. Orthop. Res. 19(4):677–687, 2001.

    Article  CAS  PubMed  Google Scholar 

  36. Jay, G. D., J. R. Torres, D. K. Rhee, H. J. Helminen, M. M. Hytinnen, C. Chung-Ja, K. Elsaid, K. Kyung-Suk, C. Yajun, and M. L. Warman. Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum. 56(11):3662–3669, 2007.

    Article  CAS  PubMed  Google Scholar 

  37. Kääb, M. J., H. J. Bail, A. Rotter, P. Mainil-Varlet, L. Apgwynn, and A. Weiler. Monopolar radiofrequency treatment of partial-thickness cartilage defects in the sheep knee joint leads to extended cartilage injury. Am. J. Sports Med. 33(10):1472–1478, 2005.

    Article  PubMed  Google Scholar 

  38. Katta, J., Z. M. Jin, E. Ingham, and J. Fisher. Biotribology of articular cartilage—a review of the recent advances. Med. Eng. Phys. 30(10):1349–1363, 2008.

    Article  PubMed  Google Scholar 

  39. Katta, J., Z. Jin, E. Ingham, and J. Fisher. Effect of nominal stress on the long term friction, deformation and wear of native and glycosaminoglycan deficient articular cartilage. Osteoarthritis Cartilage 17(5):662–668, 2009.

    Article  CAS  PubMed  Google Scholar 

  40. Katta, J., Z. Jin, E. Ingham, and J. Fisher. Chondroitin sulphate: an effective joint lubricant? Osteoarthritis Cartilage 17(8):1001–1008, 2009.

    Article  CAS  PubMed  Google Scholar 

  41. Krishnan, R., M. Kopacz, and G. A. Ateshian. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 22(3):565–570, 2004.

    Article  PubMed  Google Scholar 

  42. Krishnan, R., E. N. Mariner, and G. A. Ateshian. Effect of dynamic loading on the frictional response of bovine articular cartilage. J. Biomech. 38(8):1665–1673, 2005.

    Article  PubMed  Google Scholar 

  43. MacConaill, M. A. The function of inter-articular fibrocartilages, with special references to the knee and inferior radio-ulnar joints. J. Anat. 66:210–227, 1932.

    CAS  PubMed  Google Scholar 

  44. Macirowski, T., S. Tepic, and R. W. Mann. Cartilage stresses in the human hip-joint. J. Biomech. Eng. Trans. ASME 116(1):10–18, 1994.

    Article  CAS  Google Scholar 

  45. Malamut, S., Y. Kligerman, and I. Etsion. The effect of dwell time on the static friction in creeping elastic-plastic polymer spherical contact. Tribol. Lett. 35(3):159–170, 2009.

    Article  CAS  Google Scholar 

  46. McCutchen, C. W. Boundary lubrication by synovial fluid—demonstration and possible osmotic explanation. Federation Proc. 25(3P1):1061–1068, 1966.

    CAS  Google Scholar 

  47. McCutchen, C. W. Sponge-hydrostatic and weeping bearings. Nature 184(4695):1284–1285, 1959.

    Article  Google Scholar 

  48. McCutchen, C. W. The frictional properties of animal joints. Wear 5:1–17, 1962.

    Article  Google Scholar 

  49. Merkher, Y., S. Sivan, I. Etsion, A. Maroudas, G. Halperin, and A. Yosef. A rational human joint friction test using a human cartilage-on-cartilage arrangement. Tribol. Lett. 22(1):29–36, 2006.

    Article  Google Scholar 

  50. Mori, S., M. Naito, and S. Moriyama. Highly viscous sodium hyaluronate and joint lubrication. Int. Orthop. 26(2):116–121, 2002.

    Article  CAS  PubMed  Google Scholar 

  51. Morrell, K. C., W. A. Hodge, D. E. Krebs, and R. W. Mann. Corroboration of in vivo cartilage pressures with implications for synovial joint tribology and osteoarthritis causation. Proc. Natl Acad. Sci. USA 102(41):14819–14824, 2005.

    Article  CAS  PubMed  Google Scholar 

  52. Mow, V. C., M. H. Holmes, and W. M. Lai. Fluid transport and mechanical-properties of articular-cartilage—a review. J. Biomech. 17(5):377–394, 1984.

    Article  CAS  PubMed  Google Scholar 

  53. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress-relaxation of articualr-cartilage in compression—theory and experiments. J. Biomech. Eng. Trans. ASME 102(1):73–84, 1980.

    Article  CAS  Google Scholar 

  54. Naka, M. H., Y. Morita, and K. Ikeuchi. Influence of proteoglycan contents and of tissue hydration on the frictional characteristics of articular cartilage. Proc. Inst. Mech. Eng. H 219(H3):175–182, 2005.

    CAS  PubMed  Google Scholar 

  55. Neu, C. P., A. Khalafi, K. Komvopoulos, T. M. Schmid, and A. H. Reddi. Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor β signaling. Arthritis Rheum. 56(11):3706–3714, 2007.

    Article  CAS  PubMed  Google Scholar 

  56. Northwood, E., and J. A. Fisher. Multi-directional in vitro investigation into friction, damage and wear of innovative chondroplasty materials against articular cartilage. Clin. Biomech. 22(7):834–842, 2007.

    Article  Google Scholar 

  57. Northwood, E., J. Fisher, and R. Kowalski. Investigation of the friction and surface degradation of innovative chondroplasty materials against articular cartilage. Proc. Inst. Mech. Eng. H 221(H3):263–279, 2007.

    CAS  PubMed  Google Scholar 

  58. Oloyede, A., and N. Broom. Stress-sharing between the fluid and solid components of articular cartilage under varying rates of compression. Connect. Tissue Res. 30(2):127–141, 1993.

    CAS  PubMed  Google Scholar 

  59. Park, S. H., R. Krishnan, S. B. Nicoll, and G. A. Ateshian. Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36(12):1785–1796, 2003.

    Article  PubMed  Google Scholar 

  60. Paul, J. P., and D. A. McGrouther. Forces transmitted at the hip and knee joint of normal and disabled persons during a range of activities. Acta Orthopaedica Belgica 1(1):78–88, 1975.

    Google Scholar 

  61. Pickard, J. E., J. Fisher, E. Ingham, and J. Egan. Investigation into the effects of proteins and lipids on the frictional properties of articular cartilage. Biomaterials 19(19):1807–1812, 1998.

    Article  CAS  PubMed  Google Scholar 

  62. Radin, E. L., D. A. Swann, and P. A. Weisser. Separation of a hyaluronate-free lubricating fraction from synovial fluid. Nature 228(5269):377–378, 1970.

    Article  CAS  PubMed  Google Scholar 

  63. Sarma, A. V., G. L. Powell, and M. LaBerge. Phospholipid composition of articular cartilage boundary lubricant. J. Orthop. Res. 19(4):671–676, 2001.

    Article  CAS  PubMed  Google Scholar 

  64. Shields, K. J., J. R. Owen, and J. S. Wayne. Biomechanical and biotribological correlation of induced wear on bovine femoral condyles. J. Biomech. Eng. 131(6):061005, 2009.

    Article  PubMed  Google Scholar 

  65. Stachowiak, G. P., G. W. Stachowiak, and P. Podsiadlo. Automated classification of articular cartilage surfaces based on surface texture. Proc. Inst. Mech. Eng. H 220(8):831–843, 2006.

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka, E., T. Iwabe, D. A. Dalla-Bona, N. Kawai, T. van Eijden, M. Tanaka, and K. Tanne. The effect of experimental cartilage damage and impairment and restoration of synovial lubrication on friction in the temporomandibular joint. J. Orofac. Pain 19(4):331–336, 2005.

    PubMed  Google Scholar 

  67. Torzilli, P. A. Water-content and equilibrium water partition in immature cartilage. J. Orthop. Res. 6(5):766–769, 1988.

    Article  CAS  PubMed  Google Scholar 

  68. Van, C., and W. C. Mow. Chapter 4 ‘Structure and Function of Articular Cartilage and Meniscus’ Basic Orthopaedic Biomechanics (2nd ed.). Philadelphia: Lippincott Williams, 1997.

    Google Scholar 

  69. Walker, P. S., D. Dowson, M. D. Longfiel, and V. Wright. Boosted lubrication in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 27(6):512–518, 1968.

    Article  CAS  PubMed  Google Scholar 

  70. Williams, III, P. F., G. L. Powell, and M. LaBerge. Sliding friction analysis of phosphatidylcholine as a boundary lubricant for articular cartilage. Proc. Inst. Mech. Eng. H 207(1):59–66, 1993.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this project was kindly provided by the Oklahoma Center for the Advancement of Science and Technology (OCAST), by the Oklahoma Regents for Higher Education, and by the Vice President for Research at the University of Oklahoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Striolo.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Sikavitsas, V.I. & Striolo, A. Experimental Friction Coefficients for Bovine Cartilage Measured with a Pin-on-Disk Tribometer: Testing Configuration and Lubricant Effects. Ann Biomed Eng 39, 132–146 (2011). https://doi.org/10.1007/s10439-010-0167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0167-3

Keywords

Navigation