Skip to main content
Log in

Update on denosumab in postmenopausal osteoporosis—recent clinical data

Densoumab bei postmenopausaler Osteoporose – rezente klinische Daten

  • review
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

An Erratum to this article was published on 20 December 2012

Summary

Denosumab, a fully human monoclonal antibody against the key osteoclastogenic factor RANK ligand, is currently approved for the treatment of postmenopausal osteoporosis. Denosumab differs from bisphosphonates in many aspects, for example, its ability to act in the extracellular compartment and its likelihood to be distributed throughout the skeleton. In contrast, bisphosphonates have to be internalized by osteoclasts and are mainly located across bone surfaces. This could explain why patients with osteoporosis, who are already treated with bisphosphonates, might experience further benefit when switching to denosumab. Head-to-head studies revealed that transition to denosumab resulted in a greater increase of bone mineral density (BMD) and a greater reduction of bone turnover than did continued alendronate. Additional analyses of the phase 3 FREEDOM trial demonstrated that fracture reduction was particularly high in cortical bone, such as the wrist. In addition, denosumab treatment for a 5- and 8-year period showed sustained reduction in fracture risk, increase in BMD and continued to be well tolerated. The 7-year extension study of FREEDOM and a phase 3 trial evaluating denosumab for the treatment of male osteoporosis are still ongoing and will provide supportive data in the near future.

Zusammenfassung

Denosumab, ein voll-humaner monoklonaler Antikörper gegen den zentralen Osteoklastenfaktor RANK Ligand, ist derzeit zur Behandlung der postmenopausalen Osteoporose zugelassen. Denosumab unterscheidet sich von Bisphosphonaten in vielerlei Hinsicht, unter anderem darin, dass Denosumab seine Wirkung im extrazellulären Raum entfaltet und sich wahrscheinlich im gesamten Skelett verteilt. Im Gegensatz dazu müssen Bisphosphonate von Osteoklasten aufgenommen werden und verteilen sich überwiegend an den Knochenoberflächen. Dies könnte erklären, warum Osteoporose-Patienten, die bereits mit Bisphosphonaten behandelt wurden, weitere klinische Verbesserungen aufweisen, wenn ihre Therapie auf Denosumab umgestellt wird. Direkte Vergleichsstudien zeigten, dass eine Umstellung auf Denosumab zu einem größeren Anstieg der Knochenmineraldichte (BMD) und größerer Reduktion des Knochenumbaus führte, als eine Weiterbehandlung mit Alendronat. Zusätzliche Analysen der Phase 3 FREEDOM Studie belegten, dass die Verringerung der Frakturen besonders hoch bei kortikalen Knochen war, beispielsweise in den Handgelenksknochen. Zusätzlich zeigte die Denosumab Behandlung über fünf und acht Jahre eine anhaltende Verringerung des Frakturrisikos, einen weiteren Anstieg der BMD und eine anhaltend gute Verträglichkeit. Die über sieben Jahre laufende Verlängerungsstudie von FREEDOM und eine Phase 3 Studie zur Wirkung von Denosumab bei männlichen Osteoporose Patienten laufen derzeit und werden in näherer Zukunft weitere Daten liefern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sambrook P, Cooper C. Osteoporosis. Lancet. 2006;367:2010–8.

    Article  PubMed  CAS  Google Scholar 

  2. Zebaze RM, Ghasem-Zadeh A, Bohte A, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375:1729–36.

    Article  PubMed  Google Scholar 

  3. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.

    Article  PubMed  CAS  Google Scholar 

  4. Dempster DW. Primer on the metabolic bone diseases and disorders of bone metabolism. 7th ed. ASBMR: Washington; 2008. pp. 7–11.

  5. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.

    Article  PubMed  CAS  Google Scholar 

  6. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl 1):S1–S7.

    Article  PubMed  Google Scholar 

  7. Tsourdi E, Rachner TD, Rauner M, et al. Denosumab for bone diseases: translating bone biology into targeted therapy. Eur J Endocrinol. 2011;165:833–40.

    Article  PubMed  CAS  Google Scholar 

  8. Moen MD, Keam SJ. Denosumab: a review of its use in the treatment of postmenopausal osteoporosis. Drugs Aging. 2011;28:63–82.

    Article  PubMed  CAS  Google Scholar 

  9. Denosumab (Prolia®) Summary of product characteristics. Amgen Inc.

  10. Baron R, Ferrari S, Russell RGG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48(4):677–92.

    Article  PubMed  CAS  Google Scholar 

  11. Russell RGG, Xia Z, Dunford JE, et al. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann NY Acad Sci. 2007;1117:209–57.

    Article  PubMed  CAS  Google Scholar 

  12. Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360:53–62.

    Article  PubMed  CAS  Google Scholar 

  13. Kimmel DB. Mechanism of action, pharmacokinetic and pharmacodynamic profile, and clinical applications of nitrogen-containing bisphosphonates. J Dent Res. 2007;86:1022–33.

    Article  PubMed  CAS  Google Scholar 

  14. Kendler DL, Roux C, Benhamou CL, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res. 2010;25:72–81.

    Article  PubMed  CAS  Google Scholar 

  15. Seeman E, Libanati C, Austin M, et al. The transitory increase in PTH following denosumab administration is associated with reduced intracortical porosity: a distinctive attribute of denosumab therapy. J Bone Mineral Res. 2011;26(Suppl 1):S22, #1064.

    Google Scholar 

  16. Cummings SR, Martin JS, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.

    Article  PubMed  CAS  Google Scholar 

  17. Rizzoli R, Boonen S, Bone HG, et al. The effect of denosumab on vertebral fracture risk by type and subgroup: results from the FREEDOM trial. Osteoporosis Int. 2010;21(Suppl 1):357–8 (Abstract P841).

    Google Scholar 

  18. Boonen S, Adachi JD, Man Z, et al. Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J Clin Endocrinol Metab. 2011;96:1727–36.

    Article  PubMed  CAS  Google Scholar 

  19. Simon J, Recknor C, Moffet A, et al. Effects of Denosumab on radius BMD, strength, and wrist fractures: results from theFractureReductionEvaluation ofDenosumab inOsteoporosis Every 6Months (FREEDOM) Study. J Bone Mineral Res. 2011;26(Suppl 1):S20–21, #1062.

    Google Scholar 

  20. Papapoulos S, Chapurlat R, Libanati C, et al. Five years of denosumab exposure in women with postmenopausal osteoporosis: results from the first two years of the FREEDOM extension. J Bone Miner Res. 2012;27:694–701.

    Article  PubMed  CAS  Google Scholar 

  21. Bone HG, Chapurlat R, Libanati C, et al. Safety observations from denosumab long-term extension and cross-over studies in postmenopausal women with osteoporosis. J Bone Mineral Res. 2011;26(Suppl 1):S22–23, #1065.

    Google Scholar 

  22. Miller PD, Bolognese MA, Lewiecki EM, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43:222–9.

    Article  PubMed  CAS  Google Scholar 

  23. McClung MR, Lewiecki EM, Bolognese MA, et al. Effects of denosumab on bone mineral density and biochemical markers of bone turnover: 8-year results of a phase 2 clinical trial. J Bone Min Res. 2011;26:Abstract 1061.

  24. Orwoll E, Stubbe Teglbjærg C, Langdahl B, et al. A phase 3 Study of the efficacy and safety of denosumab in men with low bone mineral density: design of the ADAMO trial. J Bone Mineral Res. 2011;26(Suppl 1):#MO0442.

Download references

Conflict of interest

All authors serve/served as primary or coordinating investigators for the FREEDOM study in Austria.

Christian Muschitz has received speaker honoraria from Amgen, Novartis, Servier, Eli Lilly, Nycomed/Takeda, and has received educational grants/research support from Roche Austria, Eli Lilly Austria and Amgen Austria.

Astrid Fahrleitner-Pammer has received speaker honoraria from Amgen, Biomedika, Daichii, Roche, Novartis, Merck, MSD, Sanofi-Aventis, Eli Lilly, Takeda, Servier and has received educational grants.

Johannes Huber has no conflict of interest concerning this paper.

Elisabeth Preisinger has no conflict of interest.

Stefan Kudlacek has no conflict of interest.

Heinrich Resch has received speaker honoraria from Amgen, Novartis, Servier, Eli Lilly, Nycomed/Takeda, Merck (MSD), and has received educational grants/research support from Eli Lilly and Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Muschitz MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muschitz, C., Fahrleitner-Pammer, A., Huber, J. et al. Update on denosumab in postmenopausal osteoporosis—recent clinical data. Wien Med Wochenschr 162, 374–379 (2012). https://doi.org/10.1007/s10354-012-0116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-012-0116-x

Keywords

Schlüsselwörter

Navigation