Skip to main content

Advertisement

Log in

Autonomic dysfunction, immune regulation, and multiple sclerosis

  • Review Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Objective

To review existing evidence regarding interactions between the autonomic nervous system and the immune system functions in multiple sclerosis.

Methods

We reviewed the literature regarding new insights linking autonomic dysfunction to immune deregulation in multiple sclerosis, with particular focus on the specific influence of sympathetic and parasympathetic dysfunction on inflammatory and neurodegenerative processes.

Results

Autonomic dysfunction is common in multiple sclerosis, representing a significant cause of disability. Several connections between pathologic immune pathways and the autonomic nervous system function were found.

Conclusions

Autonomic dysfunction may enhance inflammatory and neurodegenerative pathways that are of major importance in multiple sclerosis. Autonomic dysfunction can present with highly variable manifestations. Sympathetic and parasympathetic dysfunction displays different patterns in multiple sclerosis, with specific impact on inflammation and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Von Herrath MG, Fujinami RS, Whitton JL (2003) Microorganisms and autoimmunity: making the barren field fertile? Nat Rev Microbiol 1:151–157. doi:10.1038/nrmicro754

    Article  Google Scholar 

  2. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717. doi:10.1002/1531-8249

    Article  CAS  PubMed  Google Scholar 

  3. Racosta JM, Sposato L, Morrow SA, Cipriano L, Kimpiski K, Kremenchutzky M (2015) Cardiovascular autonomic dysfunction in multiple sclerosis: a meta-analysis. Mult Scler Relat Disord. doi:10.1016/j.msard.2015.02.002

    Google Scholar 

  4. Racosta JM, Kimpinski K, Morrow SA, Kremenchutzky M (2015) Autonomic dysfunction in multiple sclerosis. Auton Neurosci Basic Clin. doi:10.1016/j.autneu.2015.06.001

    Google Scholar 

  5. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638. doi:10.1159/000156469

    CAS  PubMed  Google Scholar 

  6. Dunn AJ (2006) Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res 6:52–68. doi:10.1016/j.cnr.2006.04.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Elenkov IJ, Chrousos GP, Wilder RL (2000) Neuroendocrine regulation of IL-12 and TNF-alpha/IL-10 balance. Clinical implications. Ann N Y Acad Sci 917:94–105. doi:10.1111/j.1749-6632.2000.tb05374.x

    Article  CAS  PubMed  Google Scholar 

  8. Hasko G, Elenkov IJ, Kvetan V, Vizi ES (1995) Differential effect of selective block of alpha 2-adrenoreceptors on plasma levels of tumour necrosis factor-alpha, interleukin-6 and corticosterone induced by bacterial lipopolysaccharide in mice. J Endocrinol 144:457–462. doi:10.1677/joe.0.1440457

    Article  CAS  PubMed  Google Scholar 

  9. Zoukos Y, Thomaides TN, Kidd D, Cuzner ML, Thompson A (2003) Expression of beta 2 adrenoreceptors on peripheral blood mononuclear cells in patients with primary and secondary progressive multiple sclerosis: a longitudinal six month study. J Neurol Neurosurg Psychiatry 74:197–202. doi:10.1136/jnnp.74.2.197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zoukos Y, Kidd D, Woodroofe MN, Kendall BE, Thompson AJ, Cuzner ML (1994) Increased expression of high affinity IL-2 receptors and beta-adrenoceptors on peripheral blood mononuclear cells is associated with clinical and MRI activity in multiple sclerosis. Brain J Neurol 117:307–315. doi:10.1136/jnnp.74.2.197

    Article  Google Scholar 

  11. Karaszewski JW, Reder AT, Anlar B, Kim WC, Arnason BG (1991) Increased lymphocyte beta-adrenergic receptor density in progressive multiple sclerosis is specific for the CD8+, CD28− suppressor cell. Ann Neurol 30:42–47. doi:10.1002/ana.410300109

    Article  CAS  PubMed  Google Scholar 

  12. Zaffaroni M, Marino F, Bombelli R, Rasini E, Monti M, Ferrari M, Ghezzi A, Comi G, Lecchini S, Cosentino M (2008) Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp Neurol 214:315–321. doi:10.1016/j.expneurol.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  13. Giorelli M, Livrea P, Trojano M (2004) Post-receptorial mechanisms underlie functional disregulation of beta2-adrenergic receptors in lymphocytes from multiple sclerosis patients. J Neuroimmunol 155:143–149. doi:10.1016/j.jneuroim.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  14. Rajda C, Bencsik K, Vecsei LL, Bergquist J (2002) Catecholamine levels in peripheral blood lymphocytes from multiple sclerosis patients. J Neuroimmunol 124:93–100. doi:10.1016/S0165-5728(02)00002-4

    Article  CAS  PubMed  Google Scholar 

  15. Venken K, Hellings N, Liblau R, Stinissen P (2010) Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med 16:58–68. doi:10.1016/j.molmed.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  16. Khoury SJ, Healy BC, Kivisakk P, Viglietta V, Egorova S, Guttmann CR, Wedgwood JF, Hafler DA, Weiner HL, Buckle G, Cook S, Reddy S (2010) A randomized controlled double-masked trial of albuterol add-on therapy in patients with multiple sclerosis. Arch Neurol 67:1055–1061. doi:10.1001/archneurol.2010.222

    Article  PubMed Central  PubMed  Google Scholar 

  17. De Keyser J, Wilczak N, Leta R, Streetland C (1999) Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors. Neurology 53:1628–1633. doi:10.1212/WNL.53.8.1628

    Article  PubMed  Google Scholar 

  18. Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y, De Keyser J (2010) Astrocytic beta(2)-adrenergic receptors: from physiology to pathology. Prog Neurobiol 91:189–199. doi:10.1016/j.pneurobio.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  19. Harper SJ, Wilkie N (2003) MAPKs: new targets for neurodegeneration. Expert Opin Ther Targets 7:187–200. doi:10.1517/14728222.7.2.187

    Article  CAS  PubMed  Google Scholar 

  20. Seravalle G, Mancia G, Grassi G (2014) Role of the sympathetic nervous system in hypertension and hypertension-related cardiovascular disease. High Blood Press Cardiovasc Prev Off J Ital Soc Hypertens 21:89–105. doi:10.1007/s40292-014-0056-1

    Article  CAS  Google Scholar 

  21. Christiansen CF (2012) Risk of vascular disease in patients with multiple sclerosis: a review. Neurol Res 34:746–753. doi:10.1179/1743132812Y.0000000051

    Article  PubMed  Google Scholar 

  22. Shetty DN, Pathak SS (2002) Correlation between plasma neurotransmitters and memory loss in pregnancy. J Reprod Med 47:494–496. doi:10.1097/00006254-200301000-00002

    CAS  PubMed  Google Scholar 

  23. Aune B, Vårtun A, Oian P, Sager G (2000) Evidence of dysfunctional beta2-adrenoceptor signal system in pre-eclampsia. Int J Obstet Gynaecol 107:116–121. doi:10.1111/j.1471-0528.2000.tb11587.x

    Article  CAS  Google Scholar 

  24. Hedström AK, Hillert J, Olsson T, Alfredsson L (2013) Nicotine might have a protective effect in the etiology of multiple sclerosis. Mult Scler 19:1009–1013. doi:10.1177/1352458512471879

    Article  PubMed  Google Scholar 

  25. Ramagopalan SV, Lee JD, Yee IM, Guimond C, Traboulsee AL, Ebers GC, Sadovnick AD (2013) Association of smoking with risk of multiple sclerosis: a population-based study. J Neurol 260:1778–1781. doi:10.1007/s00415-013-6873-7

    Article  PubMed  Google Scholar 

  26. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109. doi:10.1038/nature06881

    Article  CAS  PubMed  Google Scholar 

  27. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5. doi:10.1189/jlb.0306164

    Article  CAS  PubMed  Google Scholar 

  28. Tracey KJ (2009) Reflex control of immunity. Nat Rev 9:418–428. doi:10.1038/nri2566

    CAS  Google Scholar 

  29. De Jonge WJ, Ulloa L (2007) The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 151:915–929. doi:10.1038/sj.bjp.0707264

    Article  PubMed Central  PubMed  Google Scholar 

  30. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337–343. doi:10.1046/j.1471-4159.2004.02347.x

    Article  CAS  PubMed  Google Scholar 

  31. Nicolussi EM, Huck S, Lassmann H, Bradl M (2009) The cholinergic anti-inflammatory system limits T cell infiltration into the neurodegenerative CNS, but cannot counteract complex CNS inflammation. Neurobiol Dis 35:24–31. doi:10.1016/j.nbd.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  32. Hao J, Simard AR, Turner GH, Wu J, Whiteaker P, Lukas RJ, Shi FD (2011) Attenuation of CNS inflammatory responses by nicotine involves α7 and non-α7 nicotinic receptors. Exp Neurol 227:110–119. doi:10.1016/j.expneurol.2010.09.020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Vijayaraghavan S, Karami A, Aeinehband S, Behbahani H, Grandien A, Nilsson B, Ekdahl KN, Lindblom RPF, Piehl F, Darreh-Shori T (2013) Regulated extracellular choline acetyltransferase activity—the plausible missing link of the distant action of acetylcholine in the cholinergic anti-Inflammatory pathway. PLoS ONE 8:65936. doi:10.1371/journal.pone.0065936

    Article  Google Scholar 

  34. Tiedje V, Schlamann M, Führer D, Moeller LC (2013) Diabetes insipidus as a rare cause of acute cognitive impairment in multiple sclerosis. Mult Scler 19:1676–1678. doi:10.1177/1352458513506952

    Article  CAS  PubMed  Google Scholar 

  35. Darlix A, Mathey G, Sauvée M, Braun M, Debouverie M (2012) Paroxysmal hypothermia in two patients with multiple sclerosis. Eur Neurol 67:268–271. doi:10.1159/000331637

    Article  CAS  PubMed  Google Scholar 

  36. Martinez-Rodriguez JE, Munteis E, Roquer J (2006) Periodic hyperthermia and abnormal circadian temperature rhythm in a patient with multiple sclerosis. Mult Scler 12:515–517. doi:10.1191/135248506ms1321cr

    Article  CAS  PubMed  Google Scholar 

  37. Huitinga I, De Groot CJ, Van der Valk P, Kamphorst W, Tilders FJ, Swaab DF (2001) Hypothalamic lesions in multiple sclerosis. J J Neuropathol Exp Neurol 60:1208–1218

    Article  CAS  PubMed  Google Scholar 

  38. Reder AT, Makowiec RL, Lowy MT (1994) Adrenal size is increased in multiple sclerosis. Arch Neurol 51:151–154. doi:10.1001/archneur.1994.00540140057015

    Article  CAS  PubMed  Google Scholar 

  39. Melief J, de Wit SJ, van Eden CG, Teunissen C, Hamann J, Uitdehaag BM, Huitinga I (2013) HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter. Acta Neuropathol 126:237–249. doi:10.1007/s00401-013-1140-7

    Article  PubMed  Google Scholar 

  40. Heesen C, Mohr DC, Huitinga I, Bergh FT, Gaab J, Otte C, Gold SM (2007) Stress regulation in multiple sclerosis: current issues and concepts. Mult Scler 13:143–148. doi:10.1177/1352458506070772

    Article  CAS  PubMed  Google Scholar 

  41. Loewy AD (1991) Forebrain nuclei involved in autonomic control. Prog Brain Res 87:253–268

    Article  CAS  PubMed  Google Scholar 

  42. Ondicova K, Kvetnansky R, Mravec B (2014) Deafferentation of the hypothalamic paraventricular nucleus (PVN) exaggerates the sympathoadrenal system activity in stressed rats. Endocr Regul 48:135–143. doi:10.4149/endo_2014_03_135

    Article  CAS  PubMed  Google Scholar 

  43. Hanken K, Manousi A, Klein J, Kastrup A, Eling P, Hildebrandt H (2015) On the relation between self-reported cognitive fatigue and the posterior hypothalamic-brainstem network. Eur J Neurol. doi:10.1111/ene.12815

    PubMed  Google Scholar 

  44. Hanken K, Eling P, Hildebrandt H (2014) The representation of inflammatory signals in the brain—a model for subjective fatigue in multiple sclerosis. Front Neurol 5:1–9. doi:10.3389/fneur.2014.00264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Racosta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Racosta, J.M., Kimpinski, K. Autonomic dysfunction, immune regulation, and multiple sclerosis. Clin Auton Res 26, 23–31 (2016). https://doi.org/10.1007/s10286-015-0325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-015-0325-7

Keywords

Navigation