Skip to main content

Advertisement

Log in

A prospective study on neurocognitive effects after primary radiotherapy in high-grade glioma patients

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Neurocognition is a very important aspect of a brain tumor patient’s quality of life following radiotherapy. The aim of the present study was to assess neurocognitive functions of patients diagnosed with high-grade gliomas undergoing radiotherapy by using the NeuroCogFx® test and to examine relevant dose/volume parameters as well as patient characteristics potentially influencing the neurological baseline status and subsequent outcome.

Methods

The cohort consisted of 44 astrocytoma World Health Organization grade III/IV patients. The NeuroCogFx® test was carried out on patients during (N = 44) and after (N = 21) irradiation. The test examines verbal/figural/short-term/working memory, psychomotorical speed, selective attention and verbal speed. The results were compared with regular patient and treatment data with an emphasis on the dose applied to the hippocampus.

Results

Overall there were only slight changes in the median test results when comparing the baseline to the follow-up tests. In the ‘verbal memory test’ lower percentile ranks were achieved in left-sided tumors compared to right-sided tumors (p = 0.034). Dexamethasone intake during radiotherapy was significantly correlated with the difference between the two test batteries. Concerning figural memory, a correlation was detected between decreased figural recognition and the radiation dose to the left hippocampus (p = 0.045).

Conclusion

We conclude that tumor infiltration of the hippocampus has an impact on neurocognitive function. However, treatment with radiotherapy seems to have less influence on cognitive outcome than expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsh JC, Godbole R, Diaz AZ et al (2011) Sparing of the hippocampus, limbic circuit and neural stem cell compartment during partial brain radiotherapy for glioma: a dosimetric feasibility study. J Med Imag Radiat Oncol 55(4):442–449. doi:10.1111/j.1754-9485.2011.02282.x

    Article  Google Scholar 

  2. Kazda T, Jancalek R, Pospisil P et al (2014) Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol (London, England) 9:139. doi:10.1186/1748-717x-9-139

    Article  Google Scholar 

  3. Gondi V, Tome WA, Mehta MP et al (2010) Why avoid the hippocampus? A comprehensive review. Radiother Oncol J Eur Soc Ther Radiol Oncol 97(3):370–376. doi:10.1016/j.radonc.2010.09.013

    Article  Google Scholar 

  4. Armstrong GT, Jain N, Liu W et al (2010) Region-specific radiotherapy and neuropsychological outcomes in adult survivors of childhood CNS malignancies. Neuro-Oncology 12(11):1173–1186. doi:10.1093/neuonc/noq104

    Article  PubMed  PubMed Central  Google Scholar 

  5. Welzel G, Fleckenstein K, Mai SK et al (2008) Acute neurocognitive impairment during cranial radiation therapy in patients with intracranial tumors. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] 184(12):647–654. doi:10.1007/s00066-008-1830-6

    Article  Google Scholar 

  6. Giovagnoli AR, Meneses RF, Silvani A et al (2014) Quality of life and brain tumors: what beyond the clinical burden? J Neurol. doi:10.1007/s00415-014-7273-3

    Google Scholar 

  7. Awad R, Fogarty G, Hong A et al (2013) Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases—the first Australian experience. Radiat Oncol 8:62. doi:10.1186/1748-717x-8-62

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rong Y, Evans J, Xu-Welliver M et al (2015) Dosimetric evaluation of intensity-modulated radiotherapy, volumetric modulated arc therapy, and helical tomotherapy for hippocampal-avoidance whole brain radiotherapy. PLoS One 10(4):e0126222. doi:10.1371/journal.pone.0126222

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oehlke O, Wucherpfennig D, Fels F et al (2015) Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: Local tumour control and survival. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al]. doi:10.1007/s00066-014-0808-9

    Google Scholar 

  10. Oskan F, Ganswindt U, Schwarz SB et al (2014) Hippocampus sparing in whole-brain radiotherapy: A review. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al]. doi:10.1007/s00066-013-0518-8

    Google Scholar 

  11. Canyilmaz E, Uslu GD, Colak F et al (2015) Comparison of dose distributions hippocampus in high grade gliomas irradiation with linac-based imrt and volumetric arc therapy: a dosimetric study. SpringerPlus 4:114. doi:10.1186/s40064-015-0894-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pinkham MB, Bertrand KC, Olson S et al (2014) Hippocampal-sparing radiotherapy: the new standard of care for World Health Organization grade II and III gliomas? J Clin Neurosci Off J Neurosurg Soc Australas 21(1):86–90. doi:10.1016/j.jocn.2013.04.005

    CAS  Google Scholar 

  13. Marsh JC, Ziel GE, Diaz AZ et al (2013) Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy IMRT during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment. J Med Imag Radiat Oncol 57(3):378–383. doi:10.1111/1754-9485.12048

    Article  Google Scholar 

  14. Oehler J, Brachwitz T, Wendt TG et al (2013) Neural stem cell sparing by linac based intensity modulated stereotactic radiotherapy in intracranial tumors. Radiat Oncol (London, England) 8:187. doi:10.1186/1748-717x-8-187

    Article  Google Scholar 

  15. Chera BS, Amdur RJ, Patel P et al (2009) A radiation oncologist’s guide to contouring the hippocampus. Am J Clin Oncol 32(1):20–22. doi:10.1097/COC.0b013e318178e4e8

    Article  PubMed  Google Scholar 

  16. Bodensohn R, Sohn M, Ganswindt U et al (2014) Hippocampal EUD in primarily irradiated glioblastoma patients. Radiat Oncol (London, England) 9:276. doi:10.1186/s13014-014-0276-5

    Article  Google Scholar 

  17. Kreth FW, Thon N, Simon M et al (2013) Gross total but not incomplete resection of glioblastoma prolongs survival in the era of radiochemotherapy. Ann Oncol Off J Eur Soc Med Oncol/ESMO 24(12):3117–3123. doi:10.1093/annonc/mdt388

    Article  Google Scholar 

  18. Bienkowski M, Berghoff AS, Marosi C et al (2015) Clinical Neuropathology practice guide 5-2015: MGMT methylation pyrosequencing in glioblastoma: unresolved issues and open questions. Clin Neuropathol 34(5):250–257

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466. doi:10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  20. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl J Med 352(10):987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  21. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med 352(10):997–1003. doi:10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  22. Balducci M, Fiorentino A, De Bonis P et al (2013) Concurrent and adjuvant temozolomide-based chemoradiotherapy schedules for glioblastoma. Hypotheses based on two prospective phase II trials. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] 189(11):926–931. doi:10.1007/s00066-013-0410-6

    Article  CAS  Google Scholar 

  23. Gerstein J, Franz K, Steinbach JP et al (2011) Radiochemotherapy with temozolomide for patients with glioblastoma. Prognostic factors and long-term outcome of unselected patients from a single institution. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] 187(11):722–728. doi:10.1007/s00066-011-2230-x

    Article  Google Scholar 

  24. Niyazi M, Schwarz SB et al (2012) Radiotherapy with and without temozolomide in elderly patients with glioblastoma. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] 188(2):154–159. doi:10.1007/s00066-011-0026-7

    Article  CAS  Google Scholar 

  25. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24(1):103–110

    Article  CAS  PubMed  Google Scholar 

  26. Niyazi M, Sohn M, Schwarz SB et al (2012) Radiation treatment parameters for re-irradiation of malignant glioma. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] 188(4):328–333. doi:10.1007/s00066-011-0055-2

    Article  CAS  Google Scholar 

  27. Niyazi M, Karin I, Sohn M et al (2013) Analysis of equivalent uniform dose (EUD) and conventional radiation treatment parameters after primary and re-irradiation of malignant glioma. Radiat Oncol (London, England) 8:287. doi:10.1186/1748-717x-8-287

    Article  Google Scholar 

  28. Fliessbach K, Hoppe C, Schlegel U et al (2006) NeuroCogFX–a computer-based neuropsychological assessment battery for the follow-up examination of neurological patients. Fortschr Neurol Psychiatr 74(11):643–650. doi:10.1055/s-2006-932162

    Article  CAS  PubMed  Google Scholar 

  29. Braun M, Weinrich C, Finke C et al (2011) Lesions affecting the right hippocampal formation differentially impair short-term memory of spatial and nonspatial associations. Hippocampus 21(3):309–318. doi:10.1002/hipo.20752

    Article  PubMed  Google Scholar 

  30. Witt JA, Coras R, Schramm J et al (2014) The overall pathological status of the left hippocampus determines preoperative verbal memory performance in left mesial temporal lobe epilepsy. Hippocampus 24(4):446–454. doi:10.1002/hipo.22238

    Article  PubMed  Google Scholar 

  31. Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, Rowley H, Kundapur V, DeNittis A, Greenspoon JN, Konski AA, Bauman GS, Shah S, Shi W, Wendland M, Kachnic L, Mehta MP (2014) Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol Off J Am Soc Clin Oncol 32(34):3810–3816. doi:10.1200/jco.2014.57.2909

    Article  Google Scholar 

  32. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raber J, Rola R, LeFevour A et al (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162(1):39–47

    Article  CAS  PubMed  Google Scholar 

  34. Pereira Dias G, Hollywood R, Bevilaqua MC et al (2014) Consequences of cancer treatments on adult hippocampal neurogenesis: implications for cognitive function and depressive symptoms. Neuro-oncology. doi:10.1093/neuonc/not321

    PubMed  PubMed Central  Google Scholar 

  35. Tallet AV, Azria D, Barlesi F et al (2012) Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol (London, England) 7:77. doi:10.1186/1748-717x-7-77

    Article  Google Scholar 

  36. Monje ML, Toda H, Palmer TD et al (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science (New York, NY) 302(5651):1760–1765. doi:10.1126/science.1088417

    Article  CAS  Google Scholar 

  37. Zonis S, Pechnick RN, Ljubimov VA, Mahgerefteh M, Wawrowsky K, Michelsen KS, Chesnokova V (2015) Chronic intestinal inflammation alters hippocampal neurogenesis. J Neuroinflammation 12(1):65. doi:10.1186/s12974-015-0281-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. http://www.neuroonkologie.de/studien. Accessed on 26.07.2015

  39. Evers P, Lee PP, DeMarco J et al (2010) Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC Cancer 10:384. doi:10.1186/1471-2407-10-384

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen L, Guerrero-Cazares H, Ye X et al (2013) Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection. Int J Radiat Oncol Biol Phys 86(4):616–622. doi:10.1016/j.ijrobp.2013.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gibbs IC, Haas-Kogan D, Terezakis S et al (2013) The subventricular zone neural progenitor cell hypothesis in glioblastoma: epiphany, Trojan Horse, or Cheshire fact? Int J Radiat Oncol Biol Phys 86(4):606–608. doi:10.1016/j.ijrobp.2013.03.002

    Article  PubMed  Google Scholar 

  42. Lee P, Eppinga W, Lagerwaard F et al (2013) Evaluation of high ipsilateral subventricular zone radiation therapy dose in glioblastoma: a pooled analysis. Int J Radiat Oncol Biol Phys 86(4):609–615. doi:10.1016/j.ijrobp.2013.01.009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Bodensohn.

Ethics declarations

Conflict of interest

O. Schnell is an advisor for Novocure, Roche; C. Belka receives research funding from the Merck-group Darmstadt, Elekta; R. Bodensohn, S. Corradini, U. Ganswindt, J. Hofmaier and M. Niyazi declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodensohn, R., Corradini, S., Ganswindt, U. et al. A prospective study on neurocognitive effects after primary radiotherapy in high-grade glioma patients . Int J Clin Oncol 21, 642–650 (2016). https://doi.org/10.1007/s10147-015-0941-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-015-0941-1

Keywords

Navigation