Skip to main content

Advertisement

Log in

An Internet-based survey on characteristics of laser tattoo removal and associated side effects

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Tattoo removal by laser therapy is a frequently performed procedure in dermatological practices. Quality-switched ruby, alexandrite, or Nd:YAG lasers are the most suitable treatment devices. Although these techniques are regarded as safe, both temporary and permanent side effects might occur. Little has been published on the frequency of complications associated with laser tattoo removal. We performed an Internet survey in German-speaking countries on characteristics of laser tattoo removal and associated side effects. A total number of 157 questionnaires entered the final analysis. Motivations for laser tattoo removal were mainly considering the tattoo as youthful folly (29 %), esthetic reasons (28 %), and 6 % indicated medical problems. One third of participants were unsatisfied with the result of laser tattoo removal, and a complete removal of the tattoo pigment was obtained in 38 % only. Local transient side effects occurred in nearly all participants, but an important rate of slightly visible scars (24 %) or even important scarring (8 %) was reported. Every fourth participant described mild or intense tan when the laser treatment was performed, and the same number of people indicated UV exposure following laser therapy, which should normally be avoided in these circumstances. As reported in the literature, nearly half of the participants experienced hypopigmentation in the treated area. Our results show that from the patients’ point of view there is an important rate of side effects occurring after laser tattoo removal. Appropriate pretreatment counseling with regard to realistic expectations, possible side effects, and the application of test spots is mandatory to ensure patient satisfaction. Laser treatment should be performed by appropriately trained personnel only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long GE, Rickman LS (1994) Infectious complications of tattoos. Clin Infect Dis 18(4):610–619

    Article  CAS  PubMed  Google Scholar 

  2. Stirn A, Hinz A, Brahler E (2006) Prevalence of tattooing and body piercing in Germany and perception of health, mental disorders, and sensation seeking among tattooed and body-pierced individuals. J Psychosom Res 60(5):531–534

    Article  PubMed  Google Scholar 

  3. Laumann AE, Derick AJ (2006) Tattoos and body piercings in the United States: a national data set. J Am Acad Dermatol 55(3):413–421

    Article  PubMed  Google Scholar 

  4. Klugl I, Hiller KA, Landthaler M, Baumler W (2010) Incidence of health problems associated with tattooed skin: a nation-wide survey in German-speaking countries. Dermatology 221(1):43–50

    Article  PubMed  Google Scholar 

  5. Latreille J, Levy JL, Guinot C (2011) Decorative tattoos and reasons for their removal: a prospective study in 151 adults living in South of France. J Eur Acad Dermatol Venereol 25(2):181–187

    Article  CAS  PubMed  Google Scholar 

  6. Koljonen V, Kluger N (2012) Specifically requesting surgical tattoo removal: are deep personal motivations involved? J Eur Acad Dermatol Venereol 26(6):685–689

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein EF (2006) Laser treatment of tattoos. Clin Dermatol 24(1):43–55

    Article  PubMed  Google Scholar 

  8. Kossida T, Rigopoulos D, Katsambas A, Anderson RR (2012) Optimal tattoo removal in a single laser session based on the method of repeated exposures. J Am Acad Dermatol 66(2):271–277

    Article  PubMed  Google Scholar 

  9. Izikson L, Farinelli W, Sakamoto F, Tannous Z, Anderson RR (2010) Safety and effectiveness of black tattoo clearance in a pig model after a single treatment with a novel 758 nm 500 picosecond laser: a pilot study. Lasers Surg Med 42(7):640–646

    Article  PubMed  Google Scholar 

  10. Brauer JA, Reddy KK, Anolik R, Weiss ET, Karen JK, Hale EK, Brightman LA, Bernstein L, Geronemus RG (2012) Successful and rapid treatment of blue and green tattoo pigment with a novel picosecond laser. Arch Dermatol 148(7):820–823

    Article  PubMed  Google Scholar 

  11. Baumler W, Eibler ET, Hohenleutner U, Sens B, Sauer J, Landthaler M (2000) Q-switch laser and tattoo pigments: first results of the chemical and photophysical analysis of 41 compounds. Lasers Surg Med 26(1):13–21

    Article  CAS  PubMed  Google Scholar 

  12. Ross V, Naseef G, Lin G, Kelly M, Michaud N, Flotte TJ, Raythen J, Anderson RR (1998) Comparison of responses of tattoos to picosecond and nanosecond Q-switched neodymium: YAG lasers. Arch Dermatol 134(2):167–171

    Article  CAS  PubMed  Google Scholar 

  13. Handley JM (2006) Adverse events associated with nonablative cutaneous visible and infrared laser treatment. J Am Acad Dermatol 55(3):482–489

    Article  PubMed  Google Scholar 

  14. Wenzel S, Landthaler M, Baumler W (2009) Recurring mistakes in tattoo removal. A case series. Dermatology 218(2):164–167

    Article  CAS  PubMed  Google Scholar 

  15. Fitzpatrick RE, Goldman MP (1994) Tattoo removal using the alexandrite laser. Arch Dermatol 130(12):1508–1514

    Article  CAS  PubMed  Google Scholar 

  16. Kluger N, Hakimi S, Del Giudice P (2009) Keloid occurring in a tattoo after laser hair removal. Acta dermato-venereologica 89(3):334–335

    Article  PubMed  Google Scholar 

  17. Alora MB, Arndt KA, Taylor CR (2000) Scarring following Q-switched laser treatment of "double tattoos". Arch Dermatol 136(2):269–270

    Article  CAS  PubMed  Google Scholar 

  18. Hammes S, Karsai S, Metelmann HR, Pohl L, Kaiser K, Park BH, Raulin C (2013) Treatment errors resulting from use of lasers and IPL by medical laypersons: results of a nationwide survey. J Dtsch Dermatol Ges 11(2):149–56

    Google Scholar 

  19. Armstrong ML, Roberts AE, Koch JR, Saunders JC, Owen DC, Anderson RR (2008) Motivation for contemporary tattoo removal: a shift in identity. Arch Dermatol 144(7):879–884

    Article  PubMed  Google Scholar 

  20. Lubeck G, Epstein E (1952) Complications of tattooing. Calif Med 76(2):83–85

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Leuenberger ML, Mulas MW, Hata TR, Goldman MP, Fitzpatrick RE, Grevelink JM (1999) Comparison of the Q-switched alexandrite, Nd:YAG, and ruby lasers in treating blue-black tattoos. Dermatol Surg 25(1):10–14

    Article  CAS  PubMed  Google Scholar 

  22. Zelickson BD, Mehregan DA, Zarrin AA, Coles C, Hartwig P, Olson S, Leaf-Davis J (1994) Clinical, histologic, and ultrastructural evaluation of tattoos treated with three laser systems. Lasers Surg Med 15(4):364–372

    Article  CAS  PubMed  Google Scholar 

  23. Levine VJ, Geronemus RG (1995) Tattoo removal with the Q-switched ruby laser and the Q-switched Nd:YAGlaser: a comparative study. Cutis 55(5):291–296

    CAS  PubMed  Google Scholar 

  24. Alster TS (1995) Q-switched alexandrite laser treatment (755 nm) of professional and amateur tattoos. J Am Acad Dermatol 33(1):69–73

    Article  CAS  PubMed  Google Scholar 

  25. Kilmer SL, Lee MS, Grevelink JM, Flotte TJ, Anderson RR (1993) The Q-switched Nd:YAG laser effectively treats tattoos. A controlled, dose–response study. Arch Dermatol 129(8):971–978

    Article  CAS  PubMed  Google Scholar 

  26. Vasold R, Naarmann N, Ulrich H, Fischer D, Konig B, Landthaler M, Baumler W (2004) Tattoo pigments are cleaved by laser light-the chemical analysis in vitro provide evidence for hazardous compounds. Photochem Photobiol 80(2):185–190

    Article  CAS  PubMed  Google Scholar 

  27. Gottschaller C, Hohenleutner U, Landthaler M (2006) Metastasis of a malignant melanoma 2 years after carbon dioxide laser treatment of a pigmented lesion: case report and review of the literature. Acta Derm Venereol 86(1):44–47

    PubMed  Google Scholar 

  28. Boer A, Wolter M, Kaufmann R (2003) [Pseudomelanoma following laser treatment or laser-treated melanoma?]. J Dtsch Dermatol Ges 1(1):47–50

    Article  PubMed  Google Scholar 

  29. Muller-Lissner S, Tack J, Feng Y, Schenck F, Specht Gryp R (2013) Levels of satisfaction with current chronic constipation treatment options in Europe—an internet survey. Aliment Pharmacol Ther 37(1):137–145

    Article  CAS  PubMed  Google Scholar 

  30. Mayr A, Gefeller O, Prokosch HU, Pirkl A, Frohlich A, de Zwaan M (2012) Web-based data collection yielded an additional response bias–but had no direct effect on outcome scales. J Clin Epidemiol 65(9):970–977

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The editorial assistance of Ms Monika Schoell is gratefully acknowledged.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, A., Rittmann, I., Hiller, KA. et al. An Internet-based survey on characteristics of laser tattoo removal and associated side effects. Lasers Med Sci 29, 729–738 (2014). https://doi.org/10.1007/s10103-013-1395-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1395-1

Keywords

Navigation