Skip to main content

Advertisement

Log in

MicroRNAs regulate bone metabolism

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoporosis is caused by an unbalance between bone formation and bone resorption. Bone homeostasis is regulated by intricate mechanisms. Recently, a novel class of regulatory factors termed microRNAs (miRNAs) has been found to play a crucial role in cell cycle control, apoptosis and other cellular processes including metabolism and differentiation. Published data have shown that some miRNAs regulate bone homeostasis, including bone formation, resorption, remodeling, repair and bone-related disease, by regulating the expression of certain cytokines and transcription factors. This review highlights the current knowledge of miRNAs and their involvement in the regulation of bone formation, bone resorption and the pathways regulating the progression of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    PubMed  Google Scholar 

  2. Van Staa TP, Dennison EM, Leufkens HG, Cooper C (2001) Epidemiology of fractures in England and Wales. Bone 29:517–522

    PubMed  Google Scholar 

  3. Rockville (2004) Bone health and osteoporosis: a report of the Surgeon General. Office of the Surgeon General (US), USA

    Google Scholar 

  4. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Akesson K, Mitchell P (2012) Capture the Fracture: a global campaign to break the fragility fracture cycle. International Osteoporosis Foundation, pp 1–26

  6. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733

    CAS  PubMed  Google Scholar 

  7. Cooper C, Mitchell P, Kanis JA (2011) Breaking the fragility fracture cycle. Osteoporos Int 22:2049–2050

    CAS  PubMed  Google Scholar 

  8. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    CAS  PubMed  Google Scholar 

  9. Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99:1233–1239

    CAS  PubMed  Google Scholar 

  10. Nakashima K, de Crombrugghe B (2003) Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet 19:458–466

    CAS  PubMed  Google Scholar 

  11. Canalis E (2009) Growth factor control of bone mass. J Cell Biochem 108:769–777

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241

    CAS  PubMed  Google Scholar 

  13. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132:49–60

    CAS  PubMed  Google Scholar 

  14. Tezuka K, Yasuda M, Watanabe N, Morimura N, Kuroda K, Miyatani S, Hozumi N (2002) Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 17:231–239

    CAS  PubMed  Google Scholar 

  15. Zamurovic N, Cappellen D, Rohner D, Susa M (2004) Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 279:37704–37715

    CAS  PubMed  Google Scholar 

  16. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308:1472–1477

    CAS  PubMed  Google Scholar 

  18. Kapinas K, Delany AM (2011) MicroRNA biogenesis and regulation of bone remodeling. Arthritis Res Ther 13:220

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronicgene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  20. Taipaleenmäki H, Bjerre Hokland L, Chen L, Kauppinen S, Kassem M (2012) Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 166:359–371

    PubMed  Google Scholar 

  21. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    CAS  PubMed  Google Scholar 

  22. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    CAS  PubMed  Google Scholar 

  23. Liu N, Olson EN (2009) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18:510–525

    Google Scholar 

  24. Li X, Jin P (2010) Roles of small regulatory RNAs in determining neuronal identity. Nat Rev Neurosci 11:329–338

    CAS  PubMed  Google Scholar 

  25. Zhang L, Stokes N, Polak L, Fuchs E (2011) Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8:294–308

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, Rodriguez-Hermosa JI, Ruiz B, Ricart W, Peral B, Fernández-Real JM (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 5:e9022

    PubMed Central  PubMed  Google Scholar 

  27. Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, Merkenschlager M, Kronenberg HM (2008) Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA 105:1949–1954

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Gaur T, Hussain S, Mudhasani R, Parulkar I, Colby JL, Frederick D, Kream BE, van Wijnen AJ, Stein JL, Stein GS, Jones SN, Lian JB (2010) Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev Biol 340:10–21

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Alexander R, Lodish H, Sun L (2011) MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin Ther Targets 15:623–636

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Buckland J (2010) Biomarkers: microRNAs under the spotlight in inflammatory arthritis. Nat Rev Rheumatol 6:436

    PubMed  Google Scholar 

  32. Di Leva G, Croce CM (2010) Roles of small RNAs in tumor formation. Trends Mol Med 16:257–267

    PubMed Central  PubMed  Google Scholar 

  33. Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F, Croce CM, Brunetti E, Grignani F, Peschle C (2007) MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9:775–787

    CAS  PubMed  Google Scholar 

  34. Zhang Y, Xie RL, Gordon J, LeBlanc K, Stein JL, Lian JB, van Wijnen AJ, Stein GS (2012) Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. J Biol Chem 287:21926–21935

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukumoto S, Saito K, Nakamura T, Siomi H, Ito H, Arai Y, Shinomiya K, Takeda S (2009) A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA 106:20794–20799

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580:4214–4217

    CAS  PubMed  Google Scholar 

  37. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, Takada S, Lotz MK, Ueno-Kudo H, Asahara H (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24:1173–1185

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Pais H, Nicolas FE, Soond SM, Swingler TE, Clark IM, Chantry A, Moulton V, Dalmay T (2010) Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA 16:489–494

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 119:3666–3677

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH (2011) A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 286:12328–12339

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676–15684

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Goettsch C, Rauner M, Pacyna N, Hempel U, Bornstein SR, Hofbauer LC (2011) MiR-125b regulates calcification of vascular smooth muscle cells. Am J Pathol 179:1594–1600

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, Katagiri T, Fukuda T, Maruyama M, Okuda A, Amemiya T, Kondoh Y, Tashiro H, Okazaki Y (2008) miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun 368:267–272

    CAS  PubMed  Google Scholar 

  44. Del Fattore A, Teti A, Rucci N (2008) Osteoclast receptors and signaling. Arch Biochem Biophys 473:147–160

    PubMed  Google Scholar 

  45. Ross FP, Teitelbaum SL (2005) αvβ3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 208:88–105

    CAS  PubMed  Google Scholar 

  46. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    CAS  PubMed  Google Scholar 

  47. Tanaka S, Nakamura K, Takahasi N, Suda T (2005) Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev 208:30–49

    CAS  PubMed  Google Scholar 

  48. Xia Z, Chen C, Chen P, Xie H, Luo X (2011) MicroRNAs and their roles in osteoclast differentiation. Front Med 5:414–419

    PubMed  Google Scholar 

  49. Sugatani T, Vacher J, Hruska KA (2011) A microRNA expression signature of osteoclastogenesis. Blood 117:3648–3657

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhou Yingchuan, Liu Yi, Cheng Li (2012) miR-21 expression is related to particle-induced osteolysis pathogenesis. J Orthop Res 30:1837–1842

    CAS  PubMed  Google Scholar 

  51. Sugatani T, Hruska KA (2007) MicroRNA-223 is a key factor in osteoclast differentiation. J Cell Biochem 101:996–999

    CAS  PubMed  Google Scholar 

  52. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, Kawamura A, Nakamura K, Takeuchi T, Tanabe M (2007) An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129:617–631

    CAS  PubMed  Google Scholar 

  53. Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284:4667–4678

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Mizoguchi F, Izu Y, Hayata T, Hemmi H, Nakashima K, Nakamura T, Kato S, Miyasaka N, Ezura Y, Noda M (2010) Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem 109:866–875

    CAS  PubMed  Google Scholar 

  55. Blüml S, Bonelli M, Niederreiter B, Puchner A, Mayr G, Hayer S, Koenders MI, van den Berg WB, Smolen J, Redlich K (2011) Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum 63:1281–1288

    PubMed  Google Scholar 

  56. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, Asahara H (2008) Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 58:1284–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10:R101

    PubMed Central  PubMed  Google Scholar 

  58. Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M (2011) The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum 63:1582–1590

    CAS  PubMed  Google Scholar 

  59. Wang Y, Li L, Moore BT, Peng XH, Fang X, Lappe JM, Recker RR, Xiao P (2012) MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One 7:e34641

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13:27–38

    PubMed  Google Scholar 

  61. Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 5:367–377

    CAS  PubMed  Google Scholar 

  62. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 26:1953–1963

    CAS  PubMed  Google Scholar 

  63. Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM (2010) miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285:25221–25231

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Kapinas K, Kessler CB, Delany AM (2009) MiR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 108:216–224

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2012) miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 287:42084–42092

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Egea V, Zahler S, Rieth N, Neth P, Popp T, Kehe K, Jochum M, Ries C (2012) Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 109:E309–E316

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Wang T, Xu Z (2010) miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 402:186–189

    CAS  PubMed  Google Scholar 

  68. Feng XH, Derynck R (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    CAS  PubMed  Google Scholar 

  69. Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2:e216

    PubMed Central  PubMed  Google Scholar 

  70. Itoh T, Ando M, Tsukamasa Y, Akao Y (2012) Expression of BMP-2 and Ets1 in BMP-2-stimulated mouse pre-osteoblast differentiation is regulated by microRNA-370. FEBS Lett 586:1693–1701

    CAS  PubMed  Google Scholar 

  71. Garzon R, Croce CM (2008) MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–358

    CAS  PubMed  Google Scholar 

  72. Liu Y, Liu W, Hu C, Xue Z, Wang G, Ding B, Luo H, Tang L, Kong X, Chen X, Liu N, Ding Y, Ding Y, Jin Y (2011) MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells 29:1804–1816

    CAS  PubMed  Google Scholar 

  73. Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 23:287–295

    CAS  PubMed  Google Scholar 

  74. Duan Z, Choy E, Harmon D, Liu X, Susa M, Mankin H, Hornicek F (2011) MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther 10:1337–1345

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 105:13906–13911

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Kopan R, Goate A (2000) A common enzyme connects notch signaling and Alzheimer’s disease. Genes Dev 14:2799–2806

    CAS  PubMed  Google Scholar 

  77. Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393:382–386

    CAS  PubMed  Google Scholar 

  78. Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L, Umans L, Schrijvers V, Checler F, Vanderstichele H, Baekelandt V, Dressel R, Cupers P, Huylebroeck D, Zwijsen A, Van Leuven F, De Strooper B (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci USA 96:11872–11877

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Canalis E, Parker K, Feng JQ, Zanotti S (2013) Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology 154:623–634

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, Dawson BC, Munivez E, Tao J, Lee BH (2012) MiRNAs-34c regulates Notch signaling during bone development. Hum Mol Genet 21:2991–3000

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Richards JB, Zheng HF, Spector TD (2012) Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet 13:576–588

    CAS  PubMed  Google Scholar 

  83. Josse RG (2008) Bone biology and the role of RANK/RANKL/OPG pathway. Health Plexus http://www.healthplexus.net/article/bone-biology-and-role-rankranklopg-pathway

  84. Wang FS, Chung PC, Lin CL, Chen MW, Ke HJ, Chang YH, Chen YS, Wu SL, Ko JY (2013) MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum 65:1530–1540

    CAS  PubMed  Google Scholar 

  85. Kuo PL, Liao SH, Hung JY, Huang MS, Hsu YL (2013) MicroRNA-33a functions as a bone metastasis suppressor in lung cancer by targeting parathyroid hormone related protein. Biochim Biophys Acta 1830:3756–3766

    CAS  PubMed  Google Scholar 

  86. Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16

    CAS  PubMed  Google Scholar 

  87. Inoue K, Shiga T, Ito Y (2008) Runx transcription factors in neuronal development. Neural Dev 3:20

    PubMed Central  PubMed  Google Scholar 

  88. Blyth K, Vaillant F, Jenkins A, McDonald L, Pringle MA, Huser C, Stein T, Neil J, Cameron ER (2010) Runx2 in normal tissues and cancer cells: a developing story. Blood Cells Mol Dis 45:117–123

    CAS  PubMed  Google Scholar 

  89. He N, Xiao Z, Yin T, Stubbs J, Li L, Quarles LD (2011) Inducible expression of Runx2 results in multiorgan abnormalities in mice. J Cell Biochem 112:653–665

    CAS  PubMed  Google Scholar 

  90. Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ, Stein GS (2011) A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA 108:9863–9868

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28:357–364

    PubMed Central  PubMed  Google Scholar 

  92. Okamoto H, Matsumi Y, Hoshikawa Y, Takubo K, Ryoke K, Shiota G (2012) Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells. PloS One 7:e43800

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Huang S, He X, Ding J, Liang L, Zhao Y, Zhang Z, Yao X, Pan Z, Zhang P, Li J, Wan D, Gu J (2008) Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer 123:972–978

    CAS  PubMed  Google Scholar 

  94. Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67:11001–11011

    CAS  PubMed  Google Scholar 

  95. Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2010) A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA 107:19879–19884

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Cui RR, Li SJ, Liu LJ, Yi L, Liang QH, Zhu X, Liu GY, Liu Y, Wu SS, Liao XB, Yuan LQ, Mao DA, Liao EY (2012) MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovasc Res 96:320–329

    CAS  PubMed  Google Scholar 

  97. Lei SF, Papasian CJ, Deng HW (2011) Polymorphisms in predicted miRNAs binding sites and osteoporosis. J Bone Miner Res 26:72–78

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G, Cao H, Wu H, Song J, Pan X, Sun Q, Ling S, Li Y, Zhu M, Zhang P, Peng S, Xie X, Tang T, Hong A, Bian Z, Bai Y, Lu A, Li Y, He F, Zhang G, Li Y (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19:93–100

    PubMed  Google Scholar 

  99. Kim YJ, Bae SW, Yu SS, Bae YC, Jung JS (2009) MiR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 24:816–825

    CAS  PubMed  Google Scholar 

  100. Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, Fukuda T, Katagiri T, Kondoh Y, Amemiya T, Tashiro H, Okazaki Y (2009) miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 583:2263–2268

    CAS  PubMed  Google Scholar 

  101. Huang S, Wang S, Bian C, Yang Z, Zhou H, Zeng Y, Li H, Han Q, Zhao RC (2012) Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev 21:2531–2540

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Pollari S, Leivonen SK, Perälä M, Fey V, Käkönen SM, Kallioniemi O (2012) Identification of microRNAs inhibiting TGF-beta-induced IL-11 production in bone metastatic breast cancer cells. PloS One 7:e37361

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Guo J, Ren F, Wang Y, Li S, Gao Z, Wang X, Ning H, Wu J, Li Y, Wang Z, Chim SM, Xu J, Chang Z (2012) miR-764-5p promotes osteoblast differentiation through inhibition of CHIP/STUB1 expression. J Bone Miner Res 27:1607–1618

    CAS  PubMed  Google Scholar 

  104. Zeng Y, Qu X, Li H, Huang S, Wang S, Xu Q, Lin R, Han Q, Li J, Zhao RC (2012) MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett 586:2375–2381

    CAS  PubMed  Google Scholar 

  105. Eskildsen T, Taipaleenmäki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 108:6139–6144

    PubMed Central  PubMed  Google Scholar 

  106. Itoh T, Nozawa Y, Akao Y (2009) MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem 284:19272–19279

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Zhang JF, Fu WM, He ML, Wang H, Wang WM, Yu SC, Bian XW, Zhou J, Lin MC, Lu G, Poon WS, Kung HF (2011) MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 22:3955–3961

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Yang L, Cheng P, Chen C, He HB, Xie GQ, Zhou HD, Xie H, Wu XP, Luo XH (2012) MiR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res 27:1598–1606

    CAS  PubMed  Google Scholar 

  109. Jensen Eric D, Rajaram G, Jennifer JW (2010) Regulation of gene expression in osteoblasts. Biofactors 36:25–32

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    CAS  PubMed  Google Scholar 

  111. Zhang C, Cho K, Huang Y, Lyons JP, Zhou X, Sinha K, McCrea PD, de Crombrugghe B (2008) Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc Natl Acad Sci USA 105:6936–6941

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Liu H, Lin H, Zhang L, Sun Q, Yuan G, Zhang L, Chen S, Chen Z (2013) miR-145 and miR-143 regulate odontoblast differentiation through targeting Klf4 and Osx genes in a feedback loop. J Biol Chem 288:9261–9271

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, Zhang Y (2012) MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 8:212–227

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Sanchez-Rodriguez MA, Ruiz-Ramos M, Correa-Munoz E, Mendoza-Nunez VM (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 8:124

    PubMed Central  PubMed  Google Scholar 

  115. Altindag O, Erel O, Soran N, Celik H, Selek S (2008) Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28:317–321

    CAS  PubMed  Google Scholar 

  116. Teixeira CC, Liu Y, Thant LM, Pang J, Palmer G, Alikhani M (2010) Foxo1, a novel regulator of osteoblast differentiation and skeletogenesis. J Biol Chem 285:31055–31065

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Kim KM, Park SJ, Jung SH, Kim EJ, Jogeswar G, Ajita J, Rhee Y, Kim CH, Lim SK (2012) miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res 27:1669–1679

    PubMed  Google Scholar 

  118. Ambrogini E, Almeida M, Martin-Millan M, Paik JH, Depinho RA, Han L, Goellner J, Weinstein RS, Jilka RL, O’Brien CA, Manolagas SC (2010) FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab 11:136–146

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interests

All authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangming Zhou or Xiaodong Xie.

About this article

Cite this article

Zhao, X., Xu, D., Li, Y. et al. MicroRNAs regulate bone metabolism. J Bone Miner Metab 32, 221–231 (2014). https://doi.org/10.1007/s00774-013-0537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0537-7

Keywords

Navigation