Skip to main content

Advertisement

Log in

Regenerative medicine for the esophagus

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Advances in tissue engineering techniques have made it possible to use human cells as biological material. This has enabled pharmacological studies to be conducted to investigate drug effects and toxicity, to clarify the mechanisms underlying diseases, and to elucidate how they compensate for impaired organ function. Many researchers have tried to construct artificial organs using these techniques, but none has succeeded in growing a whole organ. Unlike other digestive organs with complicated functions, such as the processing and absorption of nutrients, the esophagus has the relatively simple function of transporting content, which can be replicated easily by a substitute. In regenerative medicine, various combinations of materials have been applied, including scaffolding, cell sources, and bioreactors. Exciting results of tissue engineering techniques for the esophagus have been reported. In animal models, replacing full-thickness and full-circumferential defects remains challenging because of stenosis and leakage after implantation. Although many reports have manipulated various scaffolds, most have emphasized the importance of both epithelial and mesenchymal cells for the prevention of stenosis. However, the results of repair of partial full-thickness defects and mucosal defects have been promising. Two successful approaches for the replacement of mucosal defects in a clinical setting have been reported, although in contrast to the many animal models, there are few pilot studies in humans. We review the recent results and evaluate the future of regenerative medicine for the esophagus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–6.

    Article  PubMed  CAS  Google Scholar 

  2. Wilmut I, Bai Y, Taylor J. Somatic cell nuclear transfer: origins, the present position and future opportunities. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Howell JC, Wells JM. Generating intestinal tissue from stem cells: potential for research and therapy. Regen Med. 2011;6:743–55.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leushacke M, Barker N. Ex vivo culture of the intestinal epithelium: strategies and applications. Gut. 2014;63:1345–54.

    Article  PubMed  CAS  Google Scholar 

  5. Wang J, Yang W, Xie H, Song Y, Li Y, Wang L. Ischemic stroke and repair: current trends in research and tissue engineering treatments. Regen Med Res. 2014;2:3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.

    Article  PubMed  CAS  Google Scholar 

  7. Sawa Y. Current status of myocardial regeneration therapy. Gen Thorac Cardiovasc Surg. 2013;61:17–23.

    Article  PubMed  Google Scholar 

  8. Yamada T, Yoshikawa M, Takaki M, Torihashi S, Kato Y, Nakajima Y, et al. In vitro functional gut-like organ formation from mouse embryonic stem cells. Stem Cells. 2002;20:41–9.

    Article  PubMed  Google Scholar 

  9. Ueda T, Yamada T, Hokuto D, Koyama F, Kasuda S, Kanehiro H, et al. Generation of functional gut-like organ from mouse induced pluripotent stem cells. Biochem Biophys Res Commun. 2010;391:38–42.

    Article  PubMed  CAS  Google Scholar 

  10. Bitar KN, Zakhem E. Bioengineering the gut: future prospects of regenerative medicine. Nat Rev Gastroenterol Hepatol. 2016;13:543–56.

    Article  PubMed  CAS  Google Scholar 

  11. van Rijn JM, Schneeberger K, Wiegerinck CL, Nieuwenhuis EE, Middendorp S. Novel approaches: tissue engineering and stem cells—In vitro modelling of the gut. Best Pract Res Clin Gastroenterol. 2016;30:281–93.

    Article  PubMed  CAS  Google Scholar 

  12. Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid models of human gastrointestinal development and disease. Gastroenterology. 2016;150:1098–112.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 2009;15:701–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.

    Article  PubMed  CAS  Google Scholar 

  15. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25–36.

    Article  PubMed  CAS  Google Scholar 

  16. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  PubMed  CAS  Google Scholar 

  17. Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D, et al. Isolation and in vitro expansion of human colonic stem cells. Nat Med. 2011;17:1225–7.

    Article  PubMed  CAS  Google Scholar 

  18. Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32:2708–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg. 1988;23:3–9.

    Article  PubMed  CAS  Google Scholar 

  21. Spurrier RG, Grikscheit TC. Tissue engineering the small intestine. Clin Gastroenterol Hepatol. 2013;11:354–8.

    Article  PubMed  CAS  Google Scholar 

  22. Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg. 2004;240:748–54.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    Article  PubMed  CAS  Google Scholar 

  24. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med. 2012;18:618–23.

    Article  PubMed  CAS  Google Scholar 

  25. Sala FG, Kunisaki SM, Ochoa ER, Vacanti J, Grikscheit TC. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res. 2009;156:205–12.

    Article  PubMed  Google Scholar 

  26. Orlando G, Dominguez-Bendala J, Shupe T, Bergman C, Bitar KN, Booth C, et al. Cell and organ bioengineering technology as applied to gastrointestinal diseases. Gut. 2013;62:774–86.

    Article  PubMed  CAS  Google Scholar 

  27. Goodner JT, Miller TP, Pack GT, Watson WL. Torek esophagectomy; the case against segmental resection for esophageal cancer. J Thorac Surg. 1956;32:347–59.

    PubMed  CAS  Google Scholar 

  28. Dubecz A, Schwartz SI. Franz John A, Torek. Ann Thorac Surg. 2008;85:1497–9.

    Article  PubMed  Google Scholar 

  29. Leonard GD, McCaffrey JA, Maher M. Optimal therapy for oesophageal cancer. Cancer Treat Rev. 2003;29:275–82.

    Article  PubMed  Google Scholar 

  30. Whooley BP, Law S, Murthy SC, Alexandrou A, Wong J. Analysis of reduced death and complication rates after esophageal resection. Ann Surg. 2001;233:338–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mariette C, Taillier G, Van Seuningen I, Triboulet JP. Factors affecting postoperative course and survival after en bloc resection for esophageal carcinoma. Ann Thorac Surg. 2004;78:1177–83.

    Article  PubMed  Google Scholar 

  32. Atkins BZ, Shah AS, Hutcheson KA, Mangum JH, Pappas TN, Harpole DH Jr, et al. Reducing hospital morbidity and mortality following esophagectomy. Ann Thorac Surg. 2004;78:1170–6 (discussion 1170–1176).

    Article  PubMed  Google Scholar 

  33. Takeuchi H, Miyata H, Ozawa W, Udagawa H, Osugi H, Matsubara H, et al. Comparison of short-term outcomes between open and minimally invasive esohagectomy for esophageal cancer using a nationwide database in Japan. Ann Surg Oncol 2017;24:1821–7.

    Article  PubMed  Google Scholar 

  34. Gaujoux S, Le Balleur Y, Bruneval P, Larghero J, Lecourt S, Domet T, et al. Esophageal replacement by allogenic aorta in a porcine model. Surgery. 2010;148:39–47.

    Article  PubMed  Google Scholar 

  35. Poghosyan T, Catry J, Luong-Nguyen M, Bruneval P, Domet T, Arakelian L, et al. Esophageal tissue engineering: current status and perspectives. J Visc Surg. 2016;153:21–9.

    Article  PubMed  CAS  Google Scholar 

  36. Chian KS, Leong MF, Kono K. Regenerative medicine for oesophageal reconstruction after cancer treatment. Lancet Oncol. 2015;16:e84–92.

    Article  PubMed  Google Scholar 

  37. Londono R, Badylak SF. Regenerative medicine strategies for esophageal repair. Tissue Eng Part B Rev. 2015;21:393–410.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Matsuura K, Utoh R, Nagase K, Okano T. Cell sheet approach for tissue engineering and regenerative medicine. J Control Release. 2014;190:228–39.

    Article  PubMed  CAS  Google Scholar 

  39. Kuppan P, Sethuraman S, Krishnan UM. Tissue engineering interventions for esophageal disorders–promises and challenges. Biotechnol Adv. 2012;30:1481–92.

    Article  PubMed  CAS  Google Scholar 

  40. Totonelli G, Maghsoudlou P, Fishman JM, Orlando G, Ansari T, Sibbons P, et al. Esophageal tissue engineering: a new approach for esophageal replacement. World J Gastroenterol. 2012;18:6900–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Basu J, Bertram TA. Regenerative medicine of the gastrointestinal tract. Toxicol Pathol. 2014;42:82–90.

    Article  PubMed  Google Scholar 

  42. Tevlin R, Atashroo D, Duscher D, Mc Ardle A, Gurtner GC, Wan DC, et al. Impact of surgical innovation on tissue repair in the surgical patient. Br J Surg. 2015;102:e41–55.

    Article  PubMed  CAS  Google Scholar 

  43. McCracken KW, Howell JC, Wells JM, Spence JR. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc. 2011;6:1920–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Watson CL, Mahe MM, Munera J, Howell JC, Sundaram N, Poling HM, et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med. 2014;20:1310–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bitar KN, Raghavan S, Zakhem E. Tissue engineering in the gut: developments in neuromusculature. Gastroenterology. 2014;146:1614–24.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Saito M, Sakamoto T, Fujimaki M, Tsukada K, Honda T, Nozaki M. Experimental study of an artificial esophagus using a collagen sponge, a latissimus dorsi muscle flap, and split-thickness skin. Surg Today. 2000;30:606–13.

    Article  PubMed  CAS  Google Scholar 

  47. Isch JA, Engum SA, Ruble CA, Davis MM, Grosfeld JL. Patch esophagoplasty using AlloDerm as a tissue scaffold. J Pediatr Surg. 2001;36:266–8.

    Article  PubMed  CAS  Google Scholar 

  48. Grikscheit TC, Ochoa ER, Srinivasan A, Gaissert H, Vacanti JP. Tissue-engineered esophagus: experimental substitution by onlay patch or interposition. J Thorac Cardiovasc Surg. 2003;126:537–44.

    Article  PubMed  Google Scholar 

  49. Jansen PL, Klinge U, Anurov M, Titkova S, Mertens PR, Jansen M. Surgical mesh as a scaffold for tissue regeneration in the esophagus. Eur Surg Res. 2004;36:104–11.

    Article  PubMed  CAS  Google Scholar 

  50. Diemer P, Markoew S, Le DQ, Qvist N. Poly-epsilon-caprolactone mesh as a scaffold for in vivo tissue engineering in rabbit esophagus. Dis Esophagus. 2015;28:240–5.

    Article  PubMed  CAS  Google Scholar 

  51. Takimoto Y, Okumura N, Nakamura T, Natsume T, Shimizu Y. Long-term follow-up of the experimental replacement of the esophagus with a collagen-silicone composite tube. ASAIO J. 1993;39:M736–9.

    PubMed  CAS  Google Scholar 

  52. Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8:11–24.

    Article  PubMed  CAS  Google Scholar 

  53. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997;67:478–91.

    Article  PubMed  CAS  Google Scholar 

  54. Badylak SF, Meurling S, Chen M, Spievack A, Simmons-Byrd A. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg. 2000;35:1097–103.

    Article  PubMed  CAS  Google Scholar 

  55. Wei RQ, Tan B, Tan MY, Luo JC, Deng L, Chen XH, et al. Grafts of porcine small intestinal submucosa with cultured autologous oral mucosal epithelial cells for esophageal repair in a canine model. Exp Biol Med (Maywood). 2009;234:453–61.

    Article  CAS  Google Scholar 

  56. Tan B, Wei RQ, Tan MY, Luo JC, Deng L, Chen XH, et al. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. J Surg Res. 2013;182:40–8.

    Article  PubMed  CAS  Google Scholar 

  57. Poghosyan T, Sfeir R, Michaud L, Bruneval P, Domet T, Vanneaux V, et al. Circumferential esophageal replacement using a tube-shaped tissue-engineered substitute: an experimental study in minipigs. Surgery. 2015;158:266–77.

    Article  PubMed  Google Scholar 

  58. Bhrany AD, Beckstead BL, Lang TC, Farwell DG, Giachelli CM, Ratner BD. Development of an esophagus acellular matrix tissue scaffold. Tissue Eng. 2006;12:319–30.

    Article  PubMed  CAS  Google Scholar 

  59. Ozeki M, Narita Y, Kagami H, Ohmiya N, Itoh A, Hirooka Y, et al. Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J Biomed Mater Res A. 2006;79:771–8.

    Article  PubMed  CAS  Google Scholar 

  60. Marzaro M, Vigolo S, Oselladore B, Conconi MT, Ribatti D, Giuliani S, et al. In vitro and in vivo proposal of an artificial esophagus. J Biomed Mater Res A. 2006;77:795–801.

    Article  PubMed  CAS  Google Scholar 

  61. Urita Y, Komuro H, Chen G, Shinya M, Kaneko S, Kaneko M, et al. Regeneration of the esophagus using gastric acellular matrix: an experimental study in a rat model. Pediatr Surg Int. 2007;23:21–6.

    Article  PubMed  Google Scholar 

  62. Hori Y, Nakamura T, Kimura D, Kaino K, Kurokawa Y, Satomi S, et al. Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J Surg Res. 2002;102:156–60.

    Article  PubMed  CAS  Google Scholar 

  63. Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, et al. Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg. 2008;136:850–9.

    Article  PubMed  Google Scholar 

  64. Sjoqvist S, Jungebluth P, Lim ML, Haag JC, Gustafsson Y, Lemon G, et al. Experimental orthotopic transplantation of a tissue-engineered oesophagus in rats. Nat Commun. 2014;5:3562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Workman MJ, Mahe MM, Trisno S, Poling HM, Watson CL, Sundaram N, et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med. 2017;23:49–59.

    Article  PubMed  CAS  Google Scholar 

  66. Yamamoto Y, Nakamura T, Shimizu Y, Takimoto Y, Matsumoto K, Kiyotani T, et al. Experimental replacement of the thoracic esophagus with a bioabsorbable collagen sponge scaffold supported by a silicone stent in dogs. ASAIO J. 1999;45:311–6.

    Article  PubMed  CAS  Google Scholar 

  67. Doede T, Bondartschuk M, Joerck C, Schulze E, Goernig M. Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa. Artif Organs. 2009;33:328–33.

    Article  PubMed  Google Scholar 

  68. Nieponice A, Gilbert TW, Johnson SA, Turner NJ, Badylak SF. Bone marrow-derived cells participate in the long-term remodeling in a mouse model of esophageal reconstruction. J Surg Res. 2013;182:e1–e7.

    Article  PubMed  CAS  Google Scholar 

  69. Komuro H, Nakamura T, Kaneko M, Nakanishi Y, Shimizu Y. Application of collagen sponge scaffold to muscular defects of the esophagus: an experimental study in piglets. J Pediatr Surg. 2002;37:1409–13.

    Article  PubMed  Google Scholar 

  70. Badylak SF, Vorp DA, Spievack AR, Simmons-Byrd A, Hanke J, Freytes DO, et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res. 2005;128:87–97.

    Article  PubMed  Google Scholar 

  71. Lopes MF, Cabrita A, Ilharco J, Pessa P, Paiva-Carvalho J, Pires A, et al. Esophageal replacement in rat using porcine intestinal submucosa as a patch or a tube-shaped graft. Dis Esophagus. 2006;19:254–9.

    Article  PubMed  CAS  Google Scholar 

  72. Park SY, Choi JW, Park JK, Song EH, Park SA, Kim YS, et al. Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: a preliminary report. Interact Cardiovasc Thorac Surg. 2016;22:712–7.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nieponice A, McGrath K, Qureshi I, Beckman EJ, Luketich JD, Gilbert TW, et al. An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointest Endosc. 2009;69:289–96.

    Article  PubMed  Google Scholar 

  74. Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, et al. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut. 2006;55:1704–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sakurai T, Miyazaki S, Miyata G, Satomi S, Hori Y. Autologous buccal keratinocyte implantation for the prevention of stenosis after EMR of the esophagus. Gastrointest Endosc. 2007;66:167–73.

    Article  PubMed  Google Scholar 

  76. Shimizu Y, Tsukagoshi H, Fujita M, Hosokawa M, Kato M, Asaka M. Long-term outcome after endoscopic mucosal resection in patients with esophageal squamous cell carcinoma invading the muscularis mucosae or deeper. Gastrointest Endosc. 2002;56:387–90.

    Article  PubMed  Google Scholar 

  77. Oyama T, Tomori A, Hotta K, Morita S, Kominato K, Tanaka M, et al. Endoscopic submucosal dissection of early esophageal cancer. Clin Gastroenterol Hepatol. 2005;3:S67–70.

    Article  PubMed  Google Scholar 

  78. Katada C, Muto M, Momma K, Arima M, Tajiri H, Kanamaru C, et al. Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae—a multicenter retrospective cohort study. Endoscopy. 2007;39:779–83.

    Article  PubMed  CAS  Google Scholar 

  79. Lewis JJ, Rubenstein JH, Singal AG, Elmunzer BJ, Kwon RS, Piraka CR. Factors associated with esophageal stricture formation after endoscopic mucosal resection for neoplastic Barrett’s esophagus. Gastrointest Endosc. 2011;74:753–60.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kobayashi S, Kanai N, Ohki T, Takagi R, Yamaguchi N, Isomoto H, et al. Prevention of esophageal strictures after endoscopic submucosal dissection. World J Gastroenterol. 2014;20:15098–109.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Badylak SF, Hoppo T, Nieponice A, Gilbert TW, Davison JM, Jobe BA. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A. 2011;17:1643–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Nieponice A, Ciotola FF, Nachman F, Jobe BA, Hoppo T, Londono R, et al. Patch esophagoplasty: esophageal reconstruction using biologic scaffolds. Ann Thorac Surg. 2014;97:283–8.

    Article  PubMed  Google Scholar 

  83. Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology. 2012;143:582–8 e581-582.

    Article  PubMed  Google Scholar 

  84. Dua KS, Hogan WJ, Aadam AA, Gasparri M. In-vivo oesophageal regeneration in a human being by use of a non-biological scaffold and extracellular matrix. Lancet. 2016;388:55–61.

    Article  PubMed  CAS  Google Scholar 

  85. Murakami D, Yamato M, Nishida K, Ohki T, Takagi R, Yang J, et al. Fabrication of transplantable human oral mucosal epithelial cell sheets using temperature-responsive culture inserts without feeder layer cells. J Artif Organs. 2006;9:185–91.

    Article  PubMed  Google Scholar 

  86. Takagi R, Murakami D, Kondo M, Ohki T, Sasaki R, Mizutani M, et al. Fabrication of human oral mucosal epithelial cell sheets for treatment of esophageal ulceration by endoscopic submucosal dissection. Gastrointest Endosc. 2010;72:1253–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Kobayashi.

Ethics declarations

Conflict of interest

Kengo Kanetaka and his co-authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanetaka, K., Kobayashi, S. & Eguchi, S. Regenerative medicine for the esophagus. Surg Today 48, 739–747 (2018). https://doi.org/10.1007/s00595-017-1610-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-017-1610-y

Keywords

Navigation