Skip to main content

Advertisement

Log in

Secondary diabetes associated with principal endocrinopathies: the impact of new treatment modalities

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

The secondary occurrence of type 2 diabetes with various hormonal diseases (e.g. pituitary, adrenal and/or thyroid diseases) is a recurrent observation. Indeed, impaired glucose tolerance (IGT) and overt diabetes mellitus are frequently associated with acromegaly and hypercortisolism (Cushing syndrome). The increased cardiovascular morbidity and mortality associated with acromegaly and Cushing syndrome may partly be a consequence of increased insulin resistance that normally accompanies hormone excess. Acromegalic patients are insulin resistant, both in the liver and in the periphery, displaying hyperinsulinemia and increased glucose turnover in the basal post-absorptive states. The prevalence of diabetes mellitus and that of IGT in acromegaly is reported to range 16–56%, whereas the degree of glucose tolerance seems correlated with circulating growth hormone (GH) levels, age, and disease duration. Moreover, a family history of diabetes and concomitant presence of arterial hypertension have been found to predispose to diabetes as well. GH has physiological effects on glucose metabolism, stimulating gluconeogenesis and lipolysis, which results in increased blood glucose and free fatty acid levels. Conversely, insulin-like growth factor 1 (IGF-I) enhances insulin sensitivity primarily on skeletal muscles. However, in acromegaly, increased IGF-I levels are unable to counteract the insulin-resistance status determined by GH excess. Therapy with somatostatin analogues (SSAs) induce control of GH and IGF-I excess in the majority of patients, but their inhibitory effect on pancreatic insulin secretion might complicate the overall effect of this treatment on glucose tolerance. Hypercortisolism produces visceral obesity, insulin resistance, and dyslipidemia that together with hypertension, hypercoagulability, and ventricular morphologic and functional abnormalities increase cardiovascular risk, and persist up to 5 years after resolution of hypercortisolism. Hypercortisolism leads to hyperglycaemia and reduced glucose tolerance, determines insulin resistance, stimulates hepatic gluconeogenesis and glicogenolisis. In Cushing syndrome the prevalence of diabetes varies between 20 and 50%, but probably this prevalence is underestimated, as not always an oral glucose tolerance test is performed in the presence of an apparently normal fasting glycaemia. Again, disease duration, rather than hormone levels, seems to be the major determinant in the occurrence of systemic complications in Cushing syndrome. Due to the impact they have on mortality and morbidity in both acromegaly and Cushing syndrome, these complications should be treated aggressively. In patients with neuroendocrine tumours (NETs) the occurrence of altered glucose tolerance may be due to a decreased insulin secretion, like it happens in patients who underwent pancreatic surgery and in those with pheochromocytoma, or to an altered counterbalance between hormones, such as in patients with glucagonoma and somatostatinoma. Moreover, SSAs represent a valid therapeutic choice in the symptomatic treatment of NETs, and also in this case the medical therapy of the primary disease, may have a significant impact on the prevalence of glucose metabolism imbalance. In thyroid disorders, an abnormal glucose tolerance may be principally encountered in hyperthyroidism. The pathogenesis is complex and scant data on prevalence and severity are found in the literature. Adequate treatment for glucose imbalance is mandatory in these peculiar patients in line with the American Diabetes Association and the European Association for the Study of Diabetes consensus statement. In particular, since traditional insulins have two features that may complicate therapy (absorption profiles, delayed onset of action and peak activity), the new insulin analogues could be of particular interest in the management of the secondary diabetes associated with endocrinopathies, considering the frailty of these patients. Indeed, it has been demonstrated that insulin glargine, given once daily, reduces the risk of hypoglycaemia compared with other formulations, and can facilitate a more aggressive insulin treatment in this class of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ben-Shlomo A, Melmed S (2001) Acromegaly. Endocrinol Metab Clin North Am 30:565–583

    Article  PubMed  CAS  Google Scholar 

  2. Doga M, Bonadonna S, Burattin A, Giustina A (2001) Ectopic secretion of growth hormone-releasing hormone (GHRH) in neuroendocrine tumors: relevant clinical aspects. Ann Oncol 12(Suppl 2):S89–S94

    Article  PubMed  Google Scholar 

  3. Salehi F, Cohen S, Syro LV, Uribe H, Horvath E, Kovacs K, Asa SL (2006) Plurihormonality in pituitary adenomas associated with acromegaly. Endocr Pathol 17:291–296

    Article  PubMed  Google Scholar 

  4. Ferone D, Pivonello R, Lastoria S, Faggiano A, Del Basso de Caro ML, Cappabianca P, Lombardi G, Colao A (2001) In vivo and in vitro effects of octreotide, quinagolide and cabergoline in four hyperprolactinaemic acromegalics: correlation with somatostatin and dopamine D2 receptor scintigraphy. Clin Endocrinol (Oxf) 54:469–477

    Article  CAS  Google Scholar 

  5. Alexander L, Appleton D, Hall R, Ross WM, Wilkinson R (1980) Epidemiology of acromegaly in the Newcastle region. Clin Endocrinol 12:71–79

    Article  CAS  Google Scholar 

  6. Bengtsson BA, Edén S, Ernest I, Odén A, Sjögren B (1988) Epidemiology, long-term survival in acromegaly. A study of 166 cases diagnosed between 1955 and 1984. Acta Med Scand 223:327–335

    PubMed  CAS  Google Scholar 

  7. Holdaway IM, Rajasoorya RC, Gamble GD (2004) Factors influencing mortality in acromegaly. J Clin Endocrinol Metab 89:667–674

    Article  PubMed  CAS  Google Scholar 

  8. Ayuk J, Clayton RN, Holder G, Sheppard MC, Stewart PM, Bates AS (2004) Growth hormone and pituitary radiotherapy, but not serum insulin-like growth factor-I concentrations, predict excess mortality in patients with acromegaly. J Clin Endocrinol Metab 89:1613–1617

    Article  PubMed  CAS  Google Scholar 

  9. Holdaway IM (2007) Excess mortality in acromegaly. Horm Res 68(Suppl 5):166–172

    Article  PubMed  Google Scholar 

  10. Colao A, Ferone D, Marzullo P, Lombardi G (2004) Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 25:102–152

    Article  PubMed  CAS  Google Scholar 

  11. Nabarro JDN (1987) Acromegaly. Clin Endocrinol (Oxf) 26:481–512

    Article  CAS  Google Scholar 

  12. Biering H, Knappe G, Gerl H, Lochs H (2000) Prevalence of diabetes in acromegaly and Cushing syndrome. Acta Med Austriaca 27:27–31

    Article  PubMed  CAS  Google Scholar 

  13. Kreze A, Kreze-Spirova E, Mikulecky M (2001) Risk factors for glucose intolerance in active acromegaly. Braz J Med Biol Res 34:1429–1433

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki S (1996) Diabetes secondary to endocrinolopathies. Nippon Rinsho 54:2709–2714

    PubMed  CAS  Google Scholar 

  15. Chen YL, Wei CP, Lee CC, Chang TC (2007) Diabetic ketoacidosis in a patient with acromegaly. J Formos Med Assoc 106:788–791

    Article  PubMed  CAS  Google Scholar 

  16. Tran HA, Petrovsky N, Field AJ (2002) Severe diabetic retinopathy: a rare complication of acromegaly. Intern Med J 32:52–54

    Article  PubMed  CAS  Google Scholar 

  17. Colao A, Baldelli R, Marzullo P, Ferretti E, Ferone D, Gargiulo P, Petretta M, Tamburrano G, Lombardi G, Liuzzi A (2000) Systemic hypertension and impaired glucose tolerance are independently correlated to the severity of the acromegalic cardiomyopathy. J Clin Endocrinol Metab 85:193–199

    Article  PubMed  CAS  Google Scholar 

  18. Larijani B, Nakhjavani M, Baradar-Jalili R, Akrami SM, Bandarian F (2005) Diabetes mellitus following pituitary adenomectomy in euglycaemic patients with acromegaly. J Coll Physicians Surg Pak 15:430–432

    PubMed  Google Scholar 

  19. Baldelli R, Battista C, Leonetti F, Ghiggi MR, Ribaudo MC, Paoloni A, D’Amico E, Ferretti E, Baratta R, Liuzzi A, Trischitta V, Tamburrano G (2003) Glucose homeostasis in acromegaly: effects of long-acting somatostatin analogueues treatment. Clin Endocrinol (Oxf) 59:492–499

    Article  CAS  Google Scholar 

  20. Koop BL, Harris AG, Ezzat S (1994) Effect of octreotide on glucose tolerance in acromegaly. Eur J Endocrinol 130:581–586

    Article  PubMed  CAS  Google Scholar 

  21. Ronchi CL, Varca V, Beck-Peccoz P, Orsi E, Donadio F, Baccarelli A, Giavoli C, Ferrante E, Lania A, Spada A, Arosio M (2006) Comparison between six-year therapy with long-acting somatostatin analogs and successful surgery in acromegaly: effects on cardiovascular risk factors. J Clin Endocrinol Metab 91:121–128

    Article  PubMed  CAS  Google Scholar 

  22. Colao A, Auriemma RS, Galdiero M, Cappabianca P, Cavallo LM, Esposito F, Grasso LF, Lombardi G, Pivonello R (2009) Impact of somatostatin analogs vs. surgery on glucose metabolism in acromegaly: results of a 5 years observational, open, prospective study. J Clin Endocrinol Metab 94:528–537

    Article  PubMed  CAS  Google Scholar 

  23. Baldelli R, De Marinis L, Bianchi A, Pivonello R, Gasco V, Auriemma R, Pasimeni G, Cimino V, Appetecchia M, Maccario M, Lombardi G, Pontecorvi A, Colao A, Grottoli S (2008) Microalbuminuria in insulin sensitivity in patients with growth hormone-secreting pituitary tumor. J Clin Endocrinol Metab 93:710–714

    Article  PubMed  CAS  Google Scholar 

  24. Paisley AN, Drake WM (2005) Treatment of pituitary tumors: pegvisomant. Endocrine 28:111–114

    Article  PubMed  CAS  Google Scholar 

  25. Barkan AL, Burman P, Clemmons DR, Drake WM, Gagel RF, Harris PE, Trainer PJ, van der Lely AJ, Vance ML (2005) Glucose homeostasis and safety in patients with acromegaly converted from long-acting octreotide to pegvisomant. J Clin Endocrinol Metab 90:5684–5691

    Article  PubMed  CAS  Google Scholar 

  26. Pivonello R, De Martino MC, De Leo M, Lombardi G, Colao A (2008) Cushing’s syndrome. Endocrinol Metab Clin North Am 37:135–149

    Article  PubMed  CAS  Google Scholar 

  27. Faggiano A, Pivonello R, Spiezia S, De Martino MC, Filippella M, Di Somma C, Lombardi G, Colao A (2003) Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J Clin Endocrinol Metab 88:2527–2533

    Article  PubMed  CAS  Google Scholar 

  28. Terzolo M, Allasino B, Bosio S, Brusa E, Daffara F, Ventura M, Aroasio E, Sacchetto G, Reimondo G, Angeli A, Camaschella C (2004) Hyperhomocysteinemia in patients with Cushing’s syndrome. J Clin Endocrinol Metab 89:3745–3751

    Article  PubMed  CAS  Google Scholar 

  29. Tauchmanovà L, Rossi R, Biondi B, Pulcrano M, Nuzzo V, Palmieri EA, Fazio S, Lombardi G (2002) Patients with subclinical Cushing’s syndrome due to adrenal adenoma have increased cardiovascular risk. J Clin Endocrinol Metab 87:4872–4878

    Article  PubMed  Google Scholar 

  30. Connell JM, Whitworth JA, Davies DL, Lever AF, Richards AM, Fraser R (1987) Effects of ACTH and cortisol administration on blood pressure, electrolyte metabolism, atrial natriuretic peptide and renal functio in normal man. J Hypertens 5:425–433

    Article  PubMed  CAS  Google Scholar 

  31. Colao A, Pivonello R, Spiezia S, Faggiano A, Ferone D, Filippella M, Marzullo P, Cerbone G, Siciliani M, Lombardi G (1999) Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 84:2664–2672

    Article  PubMed  CAS  Google Scholar 

  32. Chiodini I, Torlontano M, Carnevale V, Trischitta V, Scillitani A (2008) Skeletal involvement in adult patients with endogenous hypercortisolism. J Endocrinol Invest 31:267–276

    PubMed  CAS  Google Scholar 

  33. Arnaldi G, Mancini T, Polenta B, Boscaro M (2004) Cardiovascular risk in Cushing’s syndrome. Pituitary 7:253–256

    Article  PubMed  Google Scholar 

  34. Catargi B, Rigalleau V, Poussin A, Ronci-Chaix N, Bex V, Vergnot V, Gin H, Roger P, Tabarin A (2003) Occult Cushing’s syndrome in type-2 diabetes. J Clin Endocrinol Metab 88:5808–5813

    Article  PubMed  CAS  Google Scholar 

  35. Nestler JE, McClanahan MA (1992) Diabetes and adrenal disease. Baillieres Clin Endocrinol Metab 6:829–847

    Article  PubMed  CAS  Google Scholar 

  36. Urowitz MB, Gladman D, Ibañez D, Fortin P, Sanchez-Guerrero J, Bae S, Clarke A, Bernatsky S, Gordon C, Hanly J, Wallace D, Isenberg D, Ginzler E, Merrill J, Alarcon G, Steinsson K, Petri M, Dooley MA, Bruce I, Manzi S, Khamashta M, Ramsey-Goldman R, Zoma A, Sturfelt G, Nived O, Maddison P, Font J, van Vollenhoven R, Aranow C, Kalunian K, Stoll T, Buyon J (2007) Clinical manifestations and coronary artery disease risk factors at diagnosis of systemic lupus erythematosus: data from an international inception cohort. Lupus 16:731–735

    Article  PubMed  CAS  Google Scholar 

  37. Meier C, Kapellen T, Tröbs RB, Hirsch W, Parwaresch R, Kiess W, Körholz D (2006) Temporary diabetes mellitus secondary to a primary pancreatic Burkitt lymphoma. Pediatr Blood Cancer 47:94–96

    Article  PubMed  Google Scholar 

  38. Steffens M, Beauloye V, Brichard B, Robert A, Alexopoulou O, Ch Vermylen, Maiter D (2008) Endocrine and metabolic disorders in young adult survivors of childhood acute lymphoblastic leukaemia (ALL) or non-Hodgkin lymphoma (NHL). Clin Endocrinol (Oxf) 69:819–827

    Article  CAS  Google Scholar 

  39. Roberson JR, Raju S, Shelso J, Pui CH, Howard SC (2008) Diabetic ketoacidosis during therapy for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 50:1207–1212

    Article  PubMed  Google Scholar 

  40. Modlin IM, Moss SF, Chung DC, Jensen RT, Snyderwine E (2008) Priorities for improving the management of gastroenteropancreatic neuroendocrine tumors. J Natl Cancer Inst 100:1282–1289

    Article  PubMed  Google Scholar 

  41. Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, Caplin M, Delle Fave G, Kaltsas GA, Krenning EP, Moss SF, Nilsson O, Rindi G, Salazar R, Ruszniewski P, Sundin A (2008) Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 9:61–72

    Article  PubMed  CAS  Google Scholar 

  42. Solcia E, Kloppel G, Sobin LH (1999) Histological typing of endocrine tumours. WHO international classification of tumours, 2nd edn. Springer, Berlin, pp 61–67

    Google Scholar 

  43. Pape UF, Jann H, Müller-Nordhorn J, Bockelbrink A, Berndt U, Willich SN, Koch M, Röcken C, Rindi G, Wiedenmann B (2008) Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer 113:256–265

    Article  PubMed  Google Scholar 

  44. Jiménez C, Hu MI, Gagel RF (2008) Management of medullary thyroid carcinoma. Endocrinol Metab Clin North Am 37:481–496

    Article  PubMed  Google Scholar 

  45. Ilias I, Pacak K (2008) A clinical overview of pheochromocytomas/paragangliomas and carcinoid tumors. Nucl Med Biol 35(Suppl 1):S27–S34

    Article  PubMed  CAS  Google Scholar 

  46. Wiesner TD, Blüher M, Windgassen M, Paschke R (2003) Improvement of insulin sensitivity after adrenalectomy in patients with pheochromocytoma. J Clin Endocrinol Metab 88:3632–3636

    Article  PubMed  CAS  Google Scholar 

  47. Ishii C, lnoue K, Negishi K, Tane N, Awata T, Katayama S (2001) Diabetic ketoacidosis in a case of pheochromocytoma. Diabetes Res Clin Pract 54:137–142

    Article  PubMed  CAS  Google Scholar 

  48. Schusdziarra VZ (1999) Glucagonoma-somatostatinoma. Gastroenterol Suppl 1:33–35

    Google Scholar 

  49. Allendorf JD, Schrope BA, Lauerman MH, Inabnet WB, Chabot JA (2007) Postoperative glycaemic control after central pancreatectomy for mid-gland lesions. World J Surg 31:164–168

    Article  PubMed  Google Scholar 

  50. Oberg K, Kaltsas G, Ferone D, Plöckinger U (2008) Standards of care in neuroendocrine tumors: biotherapy. neuroendocrinology. Dec 11 (epub ahead of print)

  51. Monaco F (2003) Classification of thyroid diseases: suggestions for a revision. J Clin Endocrinol Metab 88:1428–1432

    Article  PubMed  CAS  Google Scholar 

  52. Roubsanthisuk W, Watanakejorn P, Tunlakit M, Sriussadaporn S (2006) Hyperthyroidism induces glucose intolerance by lowering both insulin secretion and peripheral insulin sensitivity. J Med Assoc Thai 89(Suppl 5):S133–S140

    PubMed  Google Scholar 

  53. Mouradian M, Abourizk N (1983) Diabetes mellitus and thyroid disease. Diabetes Care 6:512–520

    Article  PubMed  CAS  Google Scholar 

  54. Himsworth HP, Kerr RB (1939) Insulin-sensitive and insulin insensitive types of diabetes mellitus. Clin Sci 4:119–152

    CAS  Google Scholar 

  55. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B, Association American Diabetes, Association European, for Study of Diabetes (2009) Medical management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203

    Article  PubMed  CAS  Google Scholar 

  56. Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA, Van Cauter E (1988) Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 318:1231–1239

    PubMed  CAS  Google Scholar 

  57. U.K. prospective diabetes study 16 (1995) Overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes 44:1249–1258

    Article  Google Scholar 

  58. Glaser B, Cerasi E (1999) Early intensive insulin treatment for induction of long-term glycaemic control in type 2 diabetes. Diabetes Obes Metab 1:67–74

    Article  PubMed  CAS  Google Scholar 

  59. Mayfield JA, White RD (2004) Insulin therapy for type 2 diabetes: rescue, augmentation, and replacement of beta-cell function. Am Fam Physician 70:489–500

    PubMed  Google Scholar 

  60. Wang F, Carabino JM, Vergara CM (2003) Insulin glargine: a systemic review of a long-acting insulin analogue. Clin Ther 25:1541–1577

    Article  PubMed  CAS  Google Scholar 

  61. Yki-Järvinen H, Ryysy L, Nikkila K, Tulokas T, Vanamo R, Heikkilä M (1999) Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann Intern Med 130:389–396

    PubMed  Google Scholar 

  62. Skyler JS (1998) Insulin therapy in type 2 diabetes mellitus. In: DeFronzo RA (ed) Current therapy of diabetes mellitus. Mosby, St. Louis, pp 108–116

    Google Scholar 

  63. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O (2003) Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 348:383–393

    Article  PubMed  Google Scholar 

  64. Strowig SM, Aviles-Santa ML, Raskin P (2002) Comparison of insulin monotherapy and combination therapy with insulin and metformin or insulin and troglitazone in type 2 diabetes. Diabetes Care 25:1691–1698

    Article  PubMed  CAS  Google Scholar 

  65. Rosenstock J, Dailey G, Massi-Benedetti M, Fritsche A, Lin Z, Salzman A (2005) Reduced hypoglycemia risk with insulin glargine A meta-analysis comparing insulin glargine with human NPH insulin in type 2 diabetes. Diabetes Care 28:950–955

    Article  PubMed  CAS  Google Scholar 

  66. Holleman F, Hoekstra JB (1997) Insulin lispro. N Engl J Med 337:176–183

    Article  PubMed  CAS  Google Scholar 

  67. Lepore M, Pampanelli S, Fanelli C, Porcellati F, Bartocci L, Di Vincenzo A, Cordoni C, Costa E, Brunetti P, Bolli GB (2000) Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analogue glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes 49:2142–2148

    Article  PubMed  CAS  Google Scholar 

  68. Leichter S (2008) Is the use of insulin analogues cost-effective? Adv Ther 25:285–299

    Article  PubMed  Google Scholar 

  69. Becker RH, Frick AD, Teichert L, Nosek L, Heinemann L, Heise T, Rave K (2008) Fluctuation and reproducibility of exposure and effect of insulin glargine in healthy subjects. Diabetes Obes Metab 10:1105–1113

    Article  PubMed  CAS  Google Scholar 

  70. Schreiber SA, Haak T (2007) Insulin glargine benefits patients with type 2 diabetes inadequately controlled on oral antidiabetic treatment: an observational study of everyday practice in 12, 216 patients. Diabetes Obes Metab 9:31–38

    Article  PubMed  CAS  Google Scholar 

  71. Dunn CJ, Plosker GL, Keating GM, McKeage K, Scott LJ (2003) Insulin glargine: an updated review of its use in the management of diabetes mellitus. Drugs 63:1743–1778

    Article  PubMed  CAS  Google Scholar 

  72. Colao A, Arnaldi G, Beck-Peccoz P, Cannavò S, Cozzi R, degli Uberti E, De Marinis L, De Menis E, Ferone D, Gasco V, Giustina A, Grottoli S, Lombardi G, Maffei P, Martino E, Minuto F, Pivonello R, Ghigo E (2007) Pegvisomant in acromegaly: why, when, how. J Endocrinol Invest 30:693–699

    PubMed  CAS  Google Scholar 

  73. Plöckinger U, Reuter T (2008) Pegvisomant increases intra-abdominal fat in patients with acromegaly: a pilot study. Eur J Endocrinol 158:467–471

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Resmini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resmini, E., Minuto, F., Colao, A. et al. Secondary diabetes associated with principal endocrinopathies: the impact of new treatment modalities. Acta Diabetol 46, 85–95 (2009). https://doi.org/10.1007/s00592-009-0112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-009-0112-9

Keywords

Navigation