Skip to main content
Erschienen in: Wiener klinische Wochenschrift 21-22/2013

01.11.2013 | original article

Differences in the metabolic status of healthy adults with and without active brown adipose tissue

verfasst von: Qiongyue Zhang, Hongying Ye, Qing Miao, Zhaoyun Zhang, Yi Wang, Xiaoming Zhu, Shuo Zhang, Chuantao Zuo, Zhengwei Zhang, Zhemin Huang, Ruidan Xue, Meifang Zeng, Haiyan Huang, Wanzhu Jin, Qiqun Tang, Yihui Guan, Yiming Li

Erschienen in: Wiener klinische Wochenschrift | Ausgabe 21-22/2013

Einloggen, um Zugang zu erhalten

Summary

Background

Previous studies have proven the existence of active brown adipose tissue (BAT) in adults; however, its effect on systematic metabolism remains unclear.

Aim

The current study was designed to investigate the differences in the metabolic profiles of healthy adults with and without active BAT using positron emission tomography–computed tomography (PET-CT) scans in the un-stimulated state.

Methods

A cross-sectional analysis was performed to assess the health of adults using PET-CT whole-body scans at Huashan Hospital Medical Centre between November 2009 and May 2010. A total of 62 healthy adults with active BAT were enrolled in the BAT-positive group. For each positive subject, a same-gender individual who underwent PET-CT the same day and who had no detectable BAT was chosen as the negative control. Body composition was measured, and blood samples were collected for assays of metabolic profiles and other biomarkers.

Results

In both the male and female groups, BAT-positive individuals were younger and had lower body mass indexes, fasting insulin, insulin resistance, and leptin, but a greater level of high-density lipoprotein cholesterol compared with the negative controls. In the male group, body fat content and levels of tumor necrosis factor-α were significantly lower in the BAT-positive than in the negative control group.

Conclusions

The healthy adults with active BAT in an un-stimulated state had favorable metabolic profiles suggesting that active BAT may be a potential target for preventing and treating obesity and other metabolic disorders.
Literatur
1.
Zurück zum Zitat Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281:31–5.PubMedCrossRef Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281:31–5.PubMedCrossRef
2.
Zurück zum Zitat Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.PubMedCrossRef Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.PubMedCrossRef
3.
4.
Zurück zum Zitat Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.PubMedCrossRef Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.PubMedCrossRef
5.
Zurück zum Zitat Soderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging. 2007;34:1018–22.PubMedCrossRef Soderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging. 2007;34:1018–22.PubMedCrossRef
6.
Zurück zum Zitat Williams G, Kolodny GM. Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR Am J Roentgenol. 2008;190:1406–9.PubMedCrossRef Williams G, Kolodny GM. Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR Am J Roentgenol. 2008;190:1406–9.PubMedCrossRef
7.
Zurück zum Zitat Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31.PubMedCentralPubMedCrossRef Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31.PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Barbaras L, Tal I, Palmer MR, et al. Shareware program for nuclear medicine and PET/CT PACS display and processing. AJR Am J Roentgenol. 2007;188:W565–8. Barbaras L, Tal I, Palmer MR, et al. Shareware program for nuclear medicine and PET/CT PACS display and processing. AJR Am J Roentgenol. 2007;188:W565–8.
9.
Zurück zum Zitat Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504. Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504.
10.
Zurück zum Zitat Ainsworth BE, Haskell WL, Leon AS, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc. 1993;25:71–80.PubMedCrossRef Ainsworth BE, Haskell WL, Leon AS, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc. 1993;25:71–80.PubMedCrossRef
11.
Zurück zum Zitat Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299:E601–6. Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299:E601–6.
12.
Zurück zum Zitat Stefan N, Pfannenberg C, Haring HU. The importance of brown adipose tissue. N Engl J Med. 2009;361:416–7 (author reply 418–21). Stefan N, Pfannenberg C, Haring HU. The importance of brown adipose tissue. N Engl J Med. 2009;361:416–7 (author reply 418–21).
13.
Zurück zum Zitat Grundy SM, Brewer HB Jr., Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–8.PubMedCrossRef Grundy SM, Brewer HB Jr., Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–8.PubMedCrossRef
14.
Zurück zum Zitat Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314:1–16.PubMedCrossRef Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314:1–16.PubMedCrossRef
15.
Zurück zum Zitat Pardo M, Roca-Rivada A, Seoane LM, Casanueva FF. Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine. 2012;41:374–83.PubMedCrossRef Pardo M, Roca-Rivada A, Seoane LM, Casanueva FF. Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine. 2012;41:374–83.PubMedCrossRef
16.
Zurück zum Zitat Tousignant B, Faraj M, Conus F, et al. Body fat distribution modulates insulin sensitivity in post-menopausal overweight and obese women: a MONET study. Int J Obes (Lond). 2008;32:1626–32. Tousignant B, Faraj M, Conus F, et al. Body fat distribution modulates insulin sensitivity in post-menopausal overweight and obese women: a MONET study. Int J Obes (Lond). 2008;32:1626–32.
17.
Zurück zum Zitat Goropashnaya AV, Herron J, Sexton M, et al. Relationships between plasma adiponectin and body fat distribution, insulin sensitivity, and plasma lipoproteins in Alaskan Yup’ik Eskimos: the Center for Alaska Native Health Research study. Metabolism. 2009;58:22–9.PubMedCentralPubMedCrossRef Goropashnaya AV, Herron J, Sexton M, et al. Relationships between plasma adiponectin and body fat distribution, insulin sensitivity, and plasma lipoproteins in Alaskan Yup’ik Eskimos: the Center for Alaska Native Health Research study. Metabolism. 2009;58:22–9.PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Good M, Newell FM, Haupt LM, et al. TNF and TNF receptor expression and insulin sensitivity in human omental and subcutaneous adipose tissue-influence of BMI and adipose distribution. Diab Vasc Dis Res. 2006;3:26–33.PubMedCrossRef Good M, Newell FM, Haupt LM, et al. TNF and TNF receptor expression and insulin sensitivity in human omental and subcutaneous adipose tissue-influence of BMI and adipose distribution. Diab Vasc Dis Res. 2006;3:26–33.PubMedCrossRef
19.
Zurück zum Zitat Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.PubMedCrossRef Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.PubMedCrossRef
20.
Zurück zum Zitat Arsenault BJ, Rana JS, Stroes ES, et al. Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J Am Coll Cardiol. 2009;55:35–41.PubMedCrossRef Arsenault BJ, Rana JS, Stroes ES, et al. Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J Am Coll Cardiol. 2009;55:35–41.PubMedCrossRef
21.
22.
Zurück zum Zitat Margareto J, Marti A, Martinez JA. Changes in UCP mRNA expression levels in brown adipose tissue and skeletal muscle after feeding a high-energy diet and relationships with leptin, glucose and PPARgamma. J Nutr Biochem. 2001;12:130–7.PubMedCrossRef Margareto J, Marti A, Martinez JA. Changes in UCP mRNA expression levels in brown adipose tissue and skeletal muscle after feeding a high-energy diet and relationships with leptin, glucose and PPARgamma. J Nutr Biochem. 2001;12:130–7.PubMedCrossRef
23.
Zurück zum Zitat Enriori PJ, Sinnayah P, Simonds SE, et al. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci. 2011;31:12189–97.PubMedCentralPubMedCrossRef Enriori PJ, Sinnayah P, Simonds SE, et al. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci. 2011;31:12189–97.PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Zhang Y, Kerman IA, Laque A, et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci. 2011;31:1873–84.PubMedCentralPubMedCrossRef Zhang Y, Kerman IA, Laque A, et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci. 2011;31:1873–84.PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, et al. Direct effects of leptin on brown and white adipose tissue. J Clin Invest. 1997;100:2858–64.PubMedCentralPubMedCrossRef Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, et al. Direct effects of leptin on brown and white adipose tissue. J Clin Invest. 1997;100:2858–64.PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Wang JM, Zhang YM, Wang DH. Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. J Comp Physiol B. 2006;176:663–71.PubMedCrossRef Wang JM, Zhang YM, Wang DH. Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. J Comp Physiol B. 2006;176:663–71.PubMedCrossRef
27.
Zurück zum Zitat Cancello R, Zingaretti MC, Sarzani R, et al. Leptin and UCP1 genes are reciprocally regulated in brown adipose tissue. Endocrinology. 1998;139:4747–50.PubMedCrossRef Cancello R, Zingaretti MC, Sarzani R, et al. Leptin and UCP1 genes are reciprocally regulated in brown adipose tissue. Endocrinology. 1998;139:4747–50.PubMedCrossRef
28.
Zurück zum Zitat Korac A, Buzadzic B, Petrovic V, et al. Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME. Folia Histochem Cytobiol. 2008;46:103–9.PubMedCrossRef Korac A, Buzadzic B, Petrovic V, et al. Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME. Folia Histochem Cytobiol. 2008;46:103–9.PubMedCrossRef
29.
Zurück zum Zitat Lecoultre V, Ravussin E. Brown adipose tissue and aging. Curr Opin Clin Nutr Metab Care. 2011;14:1–6.PubMedCrossRef Lecoultre V, Ravussin E. Brown adipose tissue and aging. Curr Opin Clin Nutr Metab Care. 2011;14:1–6.PubMedCrossRef
30.
Zurück zum Zitat Yoshioka K, Yoshida T, Wakabayashi Y, et al. Effects of exercise training on brown adipose tissue thermogenesis in ovariectomized obese rats. Endocrinol Jpn. 1989;36:403–8.PubMedCrossRef Yoshioka K, Yoshida T, Wakabayashi Y, et al. Effects of exercise training on brown adipose tissue thermogenesis in ovariectomized obese rats. Endocrinol Jpn. 1989;36:403–8.PubMedCrossRef
31.
Zurück zum Zitat Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.PubMedCentralPubMedCrossRef Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.PubMedCentralPubMedCrossRef
Metadaten
Titel
Differences in the metabolic status of healthy adults with and without active brown adipose tissue
verfasst von
Qiongyue Zhang
Hongying Ye
Qing Miao
Zhaoyun Zhang
Yi Wang
Xiaoming Zhu
Shuo Zhang
Chuantao Zuo
Zhengwei Zhang
Zhemin Huang
Ruidan Xue
Meifang Zeng
Haiyan Huang
Wanzhu Jin
Qiqun Tang
Yihui Guan
Yiming Li
Publikationsdatum
01.11.2013
Verlag
Springer Vienna
Erschienen in
Wiener klinische Wochenschrift / Ausgabe 21-22/2013
Print ISSN: 0043-5325
Elektronische ISSN: 1613-7671
DOI
https://doi.org/10.1007/s00508-013-0431-2

Weitere Artikel der Ausgabe 21-22/2013

Wiener klinische Wochenschrift 21-22/2013 Zur Ausgabe

MUW researcher of the month

Researcher of the Month