Skip to main content
Log in

NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

In addition to the pathogenetic CAG repeat expansion other genetic factors play a significant role in determining age at onset (AO) in Huntington disease (HD), e.g. variations in the NR2A and NR2B glutamate receptor subunit genes (GRIN2A, GRIN2B). In order to expand these findings we fine-mapped a larger HD patient panel (n = 250) using densely spaced markers flanking the originally associated SNPs in GRIN2A and GRIN2B. In GRIN2A association fine-mapping based on eight additional SNPs confirmed intron 2 as the region of strongest association. In GRIN2B fine-mapping with seven additional SNPs consolidated C2664T as causal genetic variation. Gender stratification of patients revealed differences in the variability in AO attributable to the CAG repeat number and highly significant differences in the AO association with the C2664T and rs8057394/ rs2650427 variations. Addition of the corresponding genotype variations to the effect of CAG repeat lengths resulted in a significant increase of the R 2 values only in females. The sex-specific effect for C2664T is underscored by differences in the genotype and allele frequencies observed for female versus male HD patients (P = 0.01) caused by decreased CC frequency in females. Overall, female HD patients homozygous for the CC genotype tended to have later AO compared to the other two genotypes. Stratification of the results by presumed menopausal status demonstrated that the significant findings were predominantly observed in pre-menopausal patients. We speculate that altered hormone levels herald protective effects of this genotype. Together, GRIN2A and GRIN2B genotype variations explain 7.2% additional variance in AO for HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MM, Fink SE, Janssen WG, Shah RA, Morrison JH (2004) Estrogen modulates synaptic N-methyl-d-aspartate receptor subunit distribution in the aged hippocampus. J Comp Neurol 474:419–426

    Article  PubMed  CAS  Google Scholar 

  • Andresen JM, Gayan J, Cherny SS, Brocklebank D, Alkorta-Aranburu G, Addis EA, US Venezuela Collaborative Research Group, Cardon LR, Housman DE, Wexler NS (2007) Replication of twelve association studies for Huntington’s disease residual age of onset in large Venezuelan kindreds. J Med Genet 44:44–50

    Article  PubMed  CAS  Google Scholar 

  • Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT (2005) NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 6:25–28

    Article  PubMed  CAS  Google Scholar 

  • Berliocchi L, Bano D, Nicotera P (2005) Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci 360:2255–2258

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571

    Article  PubMed  CAS  Google Scholar 

  • Fan MM, Raymond LA (2006) N-methyl-d-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol 81(5–6):272–293

    PubMed  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  PubMed  CAS  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6:1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L, Choquet D (2006) NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci USA 103:18769–18774

    Article  PubMed  CAS  Google Scholar 

  • Hao J, Janssen WG, Tang Y, Roberts JA, McKay H, Lasley B, Allen PB, Greengard P, Rapp PR, Kordower JH, Hof PR, Morrison JH (2003) Estrogen increases the number of spinophilin-immunoreactive spines in the hippocampus of young and aged female rhesus monkeys. J Comp Neurol 465:540–550

    Article  PubMed  CAS  Google Scholar 

  • Hastings ML, Krainer AR (2001) Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol 13:302–309

    Article  PubMed  CAS  Google Scholar 

  • Kehoe P, Krawczak M, Harper PS, Owen MJ, Jones AL (1999) Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J Med Genet 36:108–111

    PubMed  CAS  Google Scholar 

  • Kok HS, van Asselt KM, van der Schouw YT, Peeters PH, Wijmenga C (2005) Genetic studies to identify genes underlying menopausal age. Hum Reprod Update 5:483–493

    Article  Google Scholar 

  • Laurie DJ, Bartke I, Schoepfer R, Naujoks K, Seeburg PH (1997) Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Brain Res Mol Brain Res 51:23–32

    Article  PubMed  CAS  Google Scholar 

  • Leranth C, Shanabrough M, Redmond DE Jr (2002) Gonadal hormones are responsible for maintaining the integrity of spine synapses in the CA1 hippocampal subfield of female nonhuman primates. J Comp Neurol 4471:34–42

    Article  Google Scholar 

  • Lewontin RC (1988) On measures of gametic disequilibrium. Genetics 120:849–852

    PubMed  CAS  Google Scholar 

  • Lewis BV, Parsons M (1966) Chorea gravidarum. Lancet 1:284–286

    PubMed  CAS  Google Scholar 

  • Lynch DR, Guttmann RP (2002) Excitotoxicity: perspectives based on N-methyl-d-aspartate receptor subtypes. J Pharmacol Exp Ther 300:717–723

    Article  PubMed  CAS  Google Scholar 

  • Quinn NP, Marsden CD (1986) Menstrual-related fluctuations in Parkinson’s disease. Mov Disord 1:85–87

    Article  PubMed  CAS  Google Scholar 

  • Ranen NG, Stine OC, Abbott MH, Sherr M, Codori AM, Franz ML, Chao NI, Chung AS, Pleasant N, Callahan C et al (1995) Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet 57:593–602

    PubMed  CAS  Google Scholar 

  • Rosenblatt A, Brinkman RR, Liang KY, Almqvist EW, Margolis RL, Huang CY, Sherr M, Franz ML, Abbott MH, Hayden MR, Ross CA (2001) Familial influence on age of onset among siblings with Huntington disease. Am J Med Genet 105:399–403

    Article  PubMed  CAS  Google Scholar 

  • Saft C, Andrich JE, Brune N, Gencik M, Kraus PH, Przuntek H, Epplen JT (2004) Apolipoprotein E genotypes do not influence the age of onset in Huntington’s disease. J Neurol Neurosurg Psychiatry 75:1692–1696

    Article  PubMed  CAS  Google Scholar 

  • Saft C, Zange J, Andrich J, Muller K, Lindenberg K, Landwehrmeyer B, Vorgerd M, Kraus PH, Przuntek H, Schols L (2005) Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington’s disease. Mov Disord 20:674–679

    Article  PubMed  Google Scholar 

  • Sandyk R (1989) Estrogens and the pathophysiology of Parkinson’s disease. Int J Neurosci 45:119–122

    PubMed  CAS  Google Scholar 

  • Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 17:7155–7174

    Article  Google Scholar 

  • Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF Jr, Greenamyre JT, Snyder SH, Ross CA (1999) Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med 5:1194–1198

    Article  PubMed  CAS  Google Scholar 

  • Squitieri F, Sabbadini G, Mandich P, Gellera C, Di Maria E, Bellone E, Castellotti B, Nargi E, de Grazia U, Frontali M, Novelletto A (2000) Family and molecular data for a fine analysis of age at onset in Huntington disease. Am J Med Genet 95:366–373

    Article  PubMed  CAS  Google Scholar 

  • Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45:25–32

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983

    Article  Google Scholar 

  • Watanabe M, Inoue Y, Sakimura K, Mishina M (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3:1138–1140

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Smith PJ, Krainer AR, Zhang MQ (2005) Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes. Nucleic Acids Res 33:5053–5062

    Article  PubMed  CAS  Google Scholar 

  • Werner T (2000) Computer-assisted analysis of transcription control regions. Matinspector and other programs. Methods Mol Biol 132:337–349

    PubMed  CAS  Google Scholar 

  • Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, Marder K et al (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci USA 101:3498–3503

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek S, Epplen JT (2006) Huntington’s disease. In: Ganten D, Ruckpaul K (eds) Encyclopedic reference of genomics and proteomics in molecular medicine. Springer, Berlin, pp 832–835

    Chapter  Google Scholar 

  • Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A, Chen YT, Hsu CN (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 34:W635–W641

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Baudry M (2006) Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci 26:2956–2963

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Wiebke Hansen for excellent technical assistance. This work was supported by FoRUM grant 821984.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Arning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arning, L., Saft, C., Wieczorek, S. et al. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet 122, 175–182 (2007). https://doi.org/10.1007/s00439-007-0393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-007-0393-4

Keywords

Navigation